

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

Radiative processes in SNRs

=> Potential to disentangle between protons and electrons in the gamma-ray range

Satellites

Cherenkov

Energy Flux

The gamma-ray sky viewed by satellites

4 years of data (3rd Catalog)

3000 sources detected with 4 years of data (to be submitted)

> 1 GeV

Similar percentage of unassociated sources (thanks to on-going effort on deepening counterpart catalogs)

VHE gamma-ray experiments

Higher energy coverage (E > 20 GeV) Smaller field of view: 3.5° (MAGIC) - 5° (HESS) Better angular resolution (in comparison to Fermi !): <0.1° ~150 VHE gamma-ray sources (2/3 are Galactic) 20 being associated to SNRs/molecular cloud

A large sample of SNRs detected in gamma-rays

SNRs interacting with Molecular Clouds at GeV

Ages between 10 000 to 100 000 years

Interaction with MCs can act as target material for pion production Bright in Fermi-LAT energy range (very high luminosity up to 10³⁶ erg/s) Usually extended with a size consistent with the radio emission

SNRs interacting with Molecular Clouds at TeV

Typically faint TeV sources (if detected)

A good example: the SNR W51C

D ~6 kpc; Age ~20 kyrs

Clear sign of molecular cloud interaction (OH maser)

SNR diameter: 30 arcmin

Detected by HESS at TeV energies: 3% Crab (above 1 TeV)

Several possible associations: PWN, star forming region, molecular cloud interaction

Fermi-LAT counts map (2 - 10 GeV)

Detected by Fermi-LAT above 200 MeV; clearly extended

HESS excess map

Marianne Lemoine-Goumard, TeVPA-IDM, Amsterdam, June 2014

Broad-band modeling of W51C

Broken PL spectrum

Gamma-ray Space Telescope

Leptonic models need large electron/proton ratios; piondecay is favoured

Brems: hard to reproduce the radio synchrotron spectrum => less likely but not fully excluded

IC: very large energy content in electrons and very low density => very unlikely

10-10 (a) Pion-decay dominated 5 10-11 interaction 10-12 is favoured r.s 10-10 cm⁻² (b) Brems dominated 10 - 11 erg 10-12 Ľf, 10-10 (c) IC dominated 10⁻¹¹ 10-12 5 10^{-3} 1012 100 10-6 109 103 106 E [eV]

			Parameter	Energetics			
Model	a_e/a_p	Δs	$p_{ m br} \ ({ m GeV} \ c^{-1})$	$B \ (\mu G)$	$ar{n}_{ m H} \ ({ m cm}^{-3})$	${W_p \over (10^{50} { m erg})}$	$\frac{W_e}{(10^{50} \text{ erg})}$
 (a) π⁰-decay (b) Bremsstrahlung (c) Inverse Compton 	$0.02 \\ 1.0 \\ 1.0$	$1.4 \\ 1.4 \\ 2.3$	15 5 20	$ \begin{array}{c} 40 \\ 15 \\ 2 \end{array} $	10 10 0.1	5.2 0.54 8.4	0.13 0.87 11

Abdo, A. A. et al. 2009, ApJL, 706, 1

Fermi LAT Spectra of SNRs W44 & IC443: Signature of π°-decay gamma-rays

Our previous papers reported spectra only >200 MeV Here we report spectra down to 60 MeV thanks to: Recent update ("Pass-7") of event reconstruction, which largely improved effective area at low energies Increased exposure time: 1 yr → 4 yr

Sub-GeV spectra of IC443/W44 agree well with π^o-decay spectra *Ackermann, M. et al.* 2013, *Science*, 339, 807 Marianne Lemoine-Goumard, TeVPA-IDM, Amsterdam, June 2014

Two main scenarii proposed

See Talk by S. Gabici

Escaping cosmic-rays: the case of W44

Presence of large-scale GeV emission found in the vicinity of W44 Uchiyama et al. 2012, ApJL, 749, 35

Subtraction of W44 assuming radio map = gamma-ray map

Excess gamma-ray emission coincident with surrounding dense clouds
 Cosmic-rays that escaped from the SNR ?

Amount of escaping cosmic-rays

Energetics in broad agreement with the conjecture that SNRs are the main sources of Galactic CRs

Diffusion coefficient of the ISM (isotropic)
D(p) = D₂₈ (cp/10 GeV)^{0.6} 10²⁸ cm²/s

Solving the diffusion equation, we estimate the total kinetic energy channeled in CRs to (0.3-3)×10⁵⁰ erg

Young shell-type SNRs in the TeV range

5 shell-type SNRs detected by HESS

Young shell-type SNRs in the GeV range

The 2 brightest are detected by Fermi-LAT

RX J1713.7-3946

Vela Junior

The case of RCW 86

Lemoine-Goumard, M. et al. 2012, A&A, 545, A28

No significant detection using 40 months of Fermi observations

Upper limits derived

Γ < 1.8

Whatever the origin of the gamma-ray signal: $E < 8\% E_{sn}$

		Leptonic mod	Hadronic model			
	One-zone	Two-zone		One-zone	Two-zone	
		radio	X-ray		radio	X-ray
Β (μG)	15 (25)	> 10 (> 25)	15 (25)	400	> 10 (> 25)	> 50
Γ	2.3	2.2	2.0	1.8	2.2	1.8
E _{break.e} (TeV)	-	-	-	0.04	-	3.0
Emaxe (TeV)	25 (20)	0.2 (0.15)	25 (20)	7	0.2 (0.15)	20
E _{maxp} (TeV)	100	_	100	80	_	80
$\eta_{\rm e} \ (\times 10^{-2} \ {\rm d}_{2.5}^2)$	2 (0.9)	< 2.5 (< 0.5)	0.04 (0.02)	0.004	< 2.5 (< 0.5)	0.006
$\eta_{\rm p} \ (\times \ 10^{-2} \ {\rm d}_{25}^{2^{\circ}} / \bar{n}_{\rm em-3})$	<2	-	< 4	7	_	7
K _{ep}	> 0.1 (> 0.05)	-	> 0.006 (> 0.003)	0.002	_	0.001

Young shell-type SNRs in leptonic-dominated model

Using parameters from literature

- Similar γ-ray luminosity for different SN type
- Similar physical scenario ?
 Leptonic dominated scenario ?
 Similar seed photons for IC
- Except SN 1006. Why ?
- high latitude
- Bipolar morphology, lower Vaccel
- Caveat:

Distance uncertainties can be large

Credit: F. Acero

The Historical SNRs Cas A & Tycho

Cas A: Type II, ~AD1680 Detected by MAGIC, VERITAS & Fermi Tycho: Type Ia, SN1572 Detected by VERITAS & Fermi

Good cases for proton acceleration

For Tycho, hadronic scenario implies: Steep spectrum (Γ =2.2) Maximal energy ~ 500 TeV B field > 200 μ G Energy content in CR ~ 6% E_{SN} (~ 2% for Cas A) Proton acceleration favoured for 2 different SN types

Some first thoughts

Finally: proof of proton acceleration in SNRs

....but we're far from smoking gun for PeV Galactic CRs

And the acceleration efficiency in young SNRs is much lower than the 10% generally used to maintain the CR flux in our Galaxy

Some ideas.....

1- Very rare PeVatrons?

If 3SN/century and SNRs are PeVatrons for few 100yrs => only ~10 PeVatrons in whole Galaxy

Distant sources => hard to detect with current instruments sensitivity

...However, if SNRs accelerate up to PeV energies, they should still be surrounded by an over density of escaped PeV cosmic-rays (see Gallant et al., Cosmic-ray Origin 2014)

2- Extreme Accelerators ? The case of HESS J1640-465

HESS Collaboration, Abramowski et al. 2014, MNRAS

See talk by S. Ohm (tomorrow)

Previously associated as a PWN New HESS data suggest an asymmetry along northern SN shell GeV-TeV spectra connect and looks like other SNR detected at GeV/TeV

Implication of SNR scenario:

Product of energy in protons and target density of 4 x 10⁵² erg cm⁻³ is required to explain observed luminosity => need high densities (up to 350 cm⁻³) such dense gas has not been found

for density of ~100 cm⁻³ and canonical 10% in CRs: $\rightarrow E_{SN}$ could be ~4 x 10⁵¹ erg \rightarrow Acceleration efficiency could

 \rightarrow Acceleration efficiency could be up to 40%

Still so much to learn ! An exciting field

