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Why heavy neutral leptons?



Why heavy neutral leptons?

The best way to get massive
neutrinos!




Minkowski, Yanagida, Gell-Mann, Ramond, Slansky, Glashow,
Mohapatra, G. Senjanovic + too many names to write, the whole
domain of neutrino physics

Most general renormalizable (see-saw) Lagrangian

_ _ My _
Lsce—saw = LSM‘I_NIZ.BM'Y“NI_FaI LaNI(I)_TI NICNI+h-C-9

Assumption: all Yukawa couplings with different leptonic generations
are allowed.

I < N - number of new particles - HNLs - cannot be fixed by the
symmetries of the theory.

Let us play with A/ to see if having some number of HNLs is good for
something
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® AN = 1: Only one of the active neutrinos gets a mass
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® N = 3: All active neutrinos get masses: all neutrino experiments,
can be explained (LSND with known tensions). The theory
contains 6 new CP-violating phases: baryon asymmetry of the
Universe can be understood. If LSND is dropped, dark matter in
the Universe can be explained. The quantisation of electric
charges follows from the requirement of anomaly cancellations
(1-3-3, 1-2-2, 1-1-1, 1-graviton-graviton).
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N = 1: Only one of the active neutrinos gets a mass

N = 2: Two of the active neutrinos get masses: all neutrino
experiments, except LSND-like, can be explained. The theory
contains 3 new CP-violating phases: baryon asymmetry of the
Universe can be understood

N = 3: All active neutrinos get masses: all neutrino experiments,
can be explained (LSND with known tensions). The theory
contains 6 new CP-violating phases: baryon asymmetry of the
Universe can be understood. If LSND is dropped, dark matter in
the Universe can be explained. The quantisation of electric
charges follows from the requirement of anomaly cancellations
(1-3-3, 1-2-2, 1-1-1, 1-graviton-graviton).

N > 3: Now you can do many things, depending on your taste -
extra relativistic degrees of freedom in cosmology, neutrino
anomalies, dark matter, different scenarios for baryogenesis, and
different combinations of the above.
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HNL and neutrino masses

Notations: M p - Dirac mass, M - Majorana mass, F' - Yukawa
coupling, v - Higgs vev
One flavour see-saw formula: extremely small mixing angles

m%2,  F?v? m, GeV

— -~ =U’M — U’=—_—"~10""
M M M

m, ~
However, we need at least 2 HNL to explain atmospheric and solar
mass differences.

Consequence: instead of equality we have only the lower bound!

GeV

my
U? > o ~ 1010
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Physics of large mixing angles — symmetry

MS ’06; Kersten and Smirnov '07:
Consider SM + one extra massive Dirac spinor ¥, which is singlet with
respect to SM.

L = Lgy + 90,4V — F, Lo, VH — M 9V + h.c.,
Symmetry: lepton number conservation. For any F,, and M all active
neutrinos are massless.

Small symmetry breaking terms — small active neutrino masses :

AL = fo, Lo V°H — m W€ 4 h.c.,
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Active neutrino masses:

Fv2 x f F?v? xm

m, ~ +
M M?2
Y2 = Trace[FTF]
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Survey of constraints on HNL

2
V.

0.1 1 1 IIIIII1 1 1 IIIIIIlO 1 1 IIIII-:I-OO
m, (GeV)

From arXiv:0901.3589, Atre et al

Any increase of experimental sensitivity may lead to discovery of HNL
responsible for active neutrino masses!
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N = 3 with M; < My : the yMSM

Three Generations Three Generations
of Matter (Fermions) spin % of Matter (Fermions) spin %2
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Role of N, with mass in keV region: dark matter (has been discovered
in X-rays? M, ~ 7 keV, Bulbul et al., Boyarsky et al)

Role of N3, N3 with mass in 100 MeV — GeV region: “give” masses to
neutrinos and produce baryon asymmetry of the Universe
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Dark Matter candidate: [V,

Yukawa couplings are small —
N can be very stable.

N

V
Z
i e N N
V
/ \

Main decay mode: N — 3v.
Subdominant radiative decay
channel: N — v~.

For one flavour:

~, = 10* years <

10 keV)5 108
My 02
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Dark Matter candidate: [V,

DM particle is not stable. Main
decay mode N; — 3v is not

observabile.
Subdominant radiative decay

channel: N — v~.
Photon energy: AP

Radiative decay width:

9 (843 G%

256 - 474

sin”(20) M

rad —
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Constraints on DM HNL NV,

Stability. N1 must have a lifetime larger than that of the Universe

Production. N7 are created in the early Universe in reactions
Il - vN1, q@ — vIN; etc. We should get correct DM
abundance

Structure formation. If INq is too light it may have considerable
free streaming length and erase fluctuations on small scales. This
can be checked by the study of Lyman-« forest spectra of distant
quasars and structure of dwarf galaxies

X-rays. N1 decays radiatively, N1 — ~v, producing a narrow line
which can be detected by X-ray telescopes (such as Chandra or
XMM-Newton). seen yet
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Detection of An Unidentified Emission Line in the Stacked X-ray
spectrum of Galaxy Clusters. E. Bulbul, M. Markevitch, A. Foster, R. K.
Smith, M. Loewenstein, S. W. Randall. e-Print: arXiv:1402.2301

An unidentified line in X-ray spectra of the Andromeda galaxy and

Perseus galaxy cluster. A. Boyarsky , O. Ruchayskiy, D. lakubovskyi, J.

Franse. e-Print: arXiv:1402.4119

[Amsterdam, June 26, 2014]—p. 13




Searches for HNL in space

e Has been previously searched with XMM-Newton, Chandra,
Suzaku, INTEGRAL

e Spectral resolution is not enough (required AE/E ~ 1077)

e Proposed/planned X-ray missions with sufficient spectral resolution:
Astro-H LOFT

. g .
X-RAY OBSERVATORY

ASTRO-H

Athena+

RTH E'Hﬁ -{: sl 3 - o T - M -How. DiD ()HD!I\.IAR\’- MATTER
THE MTROPHYS"C-S_QF:{‘HE_ L # : SL1 ASSEMBLE.INTO THE LARGE SCALE
HOT AND ENERGETI 1 g SRR *'
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Reading the Metal Dw
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Baryon asymmetry

® CP-violation - OK due to new complex phases in Yukawa
couplings

® [epton number violation - OK due to HNL couplings and due to
Majorana masses

® Deviations from thermal equilibrium: OK as HNL are out of
thermal equilibrium for T > O(100) GeV
Note:

® there is no electroweak phase transition for the Higgs mass 126
GeV

® For masses of IV in the GeV region they decay at temperatures

~ 1 GeV. These decays cannot be used for baryogenesis, as they
occur below the sphaleron freeze-out temperature  reseEmnImezs2013- . 15




Baryon asymmetry

Akhmedov, Rubakov, Smirnov; Asaka, MS

ldea - N2 3 HNL oscillations as a source of baryon asymmetry.
Qualitatively:

® HNL are created in the early universe and oscillate in a coherent

way with CP-breaking.
® | epton number from HNL can go to active neutrinos.

® The lepton number of active left-handed neutrinos is transferred to
baryons due to equilibrium sphaleron processes.
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Constraints on BAU HNL N 3

Baryon asymmetry generation: CP-violation in neutrino sector+singlet
fermion oscillations+sphalerons

® BAU generation requires out of equilibrium: mixing angle of N2 3
to active neutrinos cannot be too large

® Neutrino masses. Mixing angle of IN; 3 to active neutrinos cannot
be too small

® BBN. Decays of N2 3 must not spoil Big Bang Nucleosynthesis

® Experiment. Na 3 have not been seen
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Constraints on U2 coming from the baryon asymmetry of the Universe,
from the see-saw formula, from the big bang nucleosynthesis and
experimental searches. Left panel - normal hierarchy, right panel -
inverted hierarchy (Canetti, Drewes, Frossard, MS).
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Sakharov condition

Rate of HNL equilibration I' ~ < F2T must be smaller than the rate of
the Universe expansion at the sphaleron freeze-out T' = T, ~ 130
GeV, H ~ T? /Mgy, Mg ~ Mp; (k ~ 3 x 10~° - some number
following from solution of kinetic equations in the early universe):

2

M? T2
K,/Fz (1 . M ) Tsph < sph

2

Numerically, F < 8 x 10~¢, and

) 6 (GeV\*( = M?
U” <2xX10 1 5
M M3,

2
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Experimental search for HNL

® Production

# via intermediate (hadronic) state
p + target — mesons + ..., and then hadron— N + ....

® via Z-boson decays: ete™ —+ Z —- vN

® Detection

# Subsequent decay of N to SM particles

w
Vi N3 Vuu //
)é H N2,3 'H
0 D>'< T
uw
wo e
/ 'H
X H N2,3 x i\’e\
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How to improve the bounds or to
discover HNL?




Fixed target SPS: SHIP
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very preliminar
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Conclusions

® Heavy neutral leptons can be a key to (almost all) BSM problems:
# neutrino masses and oscillations
o dark matter

o baryon asymmetry of the universe

® They can be found in Space and on the Earth
o X-ray satellites - Astro H
» proton fixed target experiment - SHIP, M < 2 GeV

» collider experiments at FCC-ee in Z-peak, M = 3 GeV
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