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Motivation

p

o Differential event rate for elastic WIMP-nucleus scattering

dR

dQ
= AF 2(Q)

∫ vmax

vmin(Q)

[
f1(v)

v

]
dv

Here

vmin(Q) = α
√

Q

is the minimal incoming velocity of incident WIMPs that can deposit the
recoil energy Q in the detector,

A ≡ ρ0σ0

2mχm2
r,N

α ≡
√

mN

2m2
r,N

mr,N =
mχmN

mχ + mN

ρ0: WIMP density near the Earth

σ0: total cross section ignoring the form factor suppression

F (Q): elastic nuclear form factor

f1(v): one-dimensional velocity distribution of halo WIMPs
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Motivation

Reconstruction of the WIMP velocity distribution

o Normalized one-dimensional WIMP velocity distribution function

f1(v) = N
{
−2Q ·

d

dQ

[
1

F 2(Q)

(
dR

dQ

)]}
Q=v2/α2

N =
2

α

{∫ ∞
0

1
√
Q

[
1

F 2(Q)

(
dR

dQ

)]
dQ

}−1

o Moments of the velocity distribution function

〈vn〉 = N (Qthre)

(
αn+1

2

)[
2Q

(n+1)/2
thre

F 2(Qthre)

(
dR

dQ

)
Q=Qthre

+ (n + 1)In(Qthre)

]

N (Qthre) =
2

α

[
2Q

1/2
thre

F 2(Qthre)

(
dR

dQ

)
Q=Qthre

+ I0(Qthre)

]−1

In(Qthre) =

∫ ∞
Qthre

Q(n−1)/2

[
1

F 2(Q)

(
dR

dQ

)]
dQ

[M. Drees and CLS, JCAP 0706, 011 (2007)]
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Motivation

Reconstruction of the WIMP velocity distribution

o Ansatz: the measured recoil spectrum in the nth Q-bin(
dR

dQ

)
expt, Q'Qn

≡ rn e
kn(Q−Qs,n) rn ≡

Nn

bn
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o Logarithmic slope and shifted point in the nth Q-bin

Q − Qn|n ≡
1

Nn

Nn∑
i=1

(Qn,i − Qn) =

(
bn

2

)
coth

(
knbn
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o Reconstructing the one-dimensional WIMP velocity distribution

f1(vs,n) = N
[

2Qs,nrn

F 2(Qs,n)

] [
d

dQ
lnF 2(Q)

∣∣∣
Q=Qs,n
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]
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Motivation

Reconstruction of the WIMP velocity distribution

o Reconstructed f1,rec(vs,n)
(76Ge, 500 events, 5 bins, up to 3 bins per window)

[M. Drees and CLS, JCAP 0706, 011 (2007)]
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p

o Probability distribution functions for p(Θ)

â Without prior knowledge about the fitting parameter

í Flat-distributed

pi (ai ) = 1 for ai,min ≤ ai ≤ ai,max,

[CLS, arXiv:1403.5610]
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o Probability distribution functions for p(Θ)

â Without prior knowledge about the fitting parameter

í Flat-distributed

pi (ai ) = 1 for ai,min ≤ ai ≤ ai,max,

â With prior knowledge about the fitting parameter

í Around a theoretical predicted/estimated or experimental measured
value µa,i

í With (statistical) uncertainties σa,i

í Gaussian-distributed

pi (ai ;µa,i , σa,i ) =
1√

2π σa,i

e−(ai−µa,i )
2/2σ2

a,i

[CLS, arXiv:1403.5610]

C.-L. Shan ApP 2014, June 27, 2014 p. 9



Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct DM Detection Data

Bayesian reconstruction of the WIMP velocity distribution function

Formalism

Formalism

p

o Bayesian analysis

p(Θ|data) =
p(data|Θ)

p(data)
· p(Θ)

â Θ:
{
a1, a2, · · · , aNBayesian

}
, a specified (combination of the) value(s) of

the fitting parameter(s)
â p(Θ): prior probability, our degree of belief about Θ being the true

value(s) of fitting parameter(s), often given in form of the
(multiplication of the) probability distribution(s) of the fitting
parameter(s)

â p(data): evidence, the total probability of obtaining the particular set
of data

C.-L. Shan ApP 2014, June 27, 2014 p. 8



Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct DM Detection Data

Bayesian reconstruction of the WIMP velocity distribution function

Formalism

Formalism

p

o Bayesian analysis

p(Θ|data) =
p(data|Θ)

p(data)
· p(Θ)

â Θ:
{
a1, a2, · · · , aNBayesian

}
, a specified (combination of the) value(s) of

the fitting parameter(s)
â p(Θ): prior probability, our degree of belief about Θ being the true

value(s) of fitting parameter(s), often given in form of the
(multiplication of the) probability distribution(s) of the fitting
parameter(s)

â p(data): evidence, the total probability of obtaining the particular set
of data

â p(data|Θ): the probability of the observed result, once the specified
(combination of the) value(s) of the fitting parameter(s) happens,
usually be described by the “likelihood” function of Θ, L(Θ).

C.-L. Shan ApP 2014, June 27, 2014 p. 8



Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct DM Detection Data

Bayesian reconstruction of the WIMP velocity distribution function

Formalism

Formalism

p

o Likelihood function for p(data|Θ)

C.-L. Shan ApP 2014, June 27, 2014 p. 10



Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct DM Detection Data

Bayesian reconstruction of the WIMP velocity distribution function

Formalism

Formalism

p

o Likelihood function for p(data|Θ)

â Theoretical one-dimensional WIMP velocity distribution function:
f1,th(v ; a1, a2, · · · , aNBayesian

)

C.-L. Shan ApP 2014, June 27, 2014 p. 10



Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct DM Detection Data

Bayesian reconstruction of the WIMP velocity distribution function

Formalism

Formalism

p

o Likelihood function for p(data|Θ)

â Theoretical one-dimensional WIMP velocity distribution function:
f1,th(v ; a1, a2, · · · , aNBayesian

)

â Assuming that the reconstructed data points are Gaussian-distributed
around the theoretical predictions

C.-L. Shan ApP 2014, June 27, 2014 p. 10



Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct DM Detection Data

Bayesian reconstruction of the WIMP velocity distribution function

Formalism

Formalism

p

o Likelihood function for p(data|Θ)

â Theoretical one-dimensional WIMP velocity distribution function:
f1,th(v ; a1, a2, · · · , aNBayesian

)

â Assuming that the reconstructed data points are Gaussian-distributed
around the theoretical predictions

L
(
f1,rec(vs,µ), µ = 1, 2, · · · , W ; ai , i = 1, 2, · · · , NBayesian

)
≡

W∏
µ=1

Gau
(
vs,µ, f1,rec(vs,µ), σf1,s,µ; a1, a2, · · · , aNBayesian

)
with

Gau
(
vs,µ, f1,rec(vs,µ), σf1,s,µ; a1, a2, · · · , aNBayesian

)
≡ 1√

2π σf1,s,µ

e
−
[
f1,rec(vs,µ)−f1,th(vs,µ;a1,a2,··· ,aNBayesian

)
]2/

2σ2
f1,s,µ
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â p(data): evidence, the total probability of obtaining the particular set
of data

â p(data|Θ): the probability of the observed result, once the specified
(combination of the) value(s) of the fitting parameter(s) happens,
usually be described by the “likelihood” function of Θ, L(Θ).
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o Input and fitting one-dimensional WIMP velocity distribution functions

â “One-parameter” shifted Maxwellian velocity distribution

f1,sh,v0
(v) =

1
√
π

(
v

v0ve

)[
e−(v−ve)2/v2

0 − e−(v+ve)2/v2
0

]
ve = 1.05 v0
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o Reconstructed f1,Bayesian(v) with an input WIMP mass
(76Ge, 0 - 100 keV, 500 events, mχ = 100 GeV, f1,sh,v0

(v) ⇒ f1,sh,v0
(v), flat-dist.)

[CLS, arXiv:1403.5610]
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o By using Bayesian analysis/fitting one could reconstruct f1(v) very precisely:

â small or even negligible systematic deviations of v0, ve and the peak
position of f1(v)

â 1σ statistical uncertainties of <∼ 20 km/s on v0, ve and the peak
position of f1(v)
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o By using Bayesian analysis/fitting one could reconstruct f1(v) very precisely:

â small or even negligible systematic deviations of v0, ve and the peak
position of f1(v)

â 1σ statistical uncertainties of <∼ 20 km/s on v0, ve and the peak
position of f1(v)

o With prior knowledge about fitting parameters

â systematic deviations and statistical uncertainties could be reduced
(significantly)

â even when the expected values are (slightly) incorrect

o Using variated analytic form of the same fitting f1(v)

â systematic deviations could be reduced (significantly)

â statistical uncertainties might however be (a bit) larger
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o Using an improper fitting f1(v)

â information about the true velocity distribution function (e.g. the
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â with clearly 2σ - 6σ deviations of v0 and ve from the theoretical
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o Using an improper fitting f1(v)

â information about the true velocity distribution function (e.g. the
peak position of f1(v)) could still be reconstructed approximately

â with clearly 2σ - 6σ deviations of v0 and ve from the theoretical
expections

o For light mχ:

â (very) shape recoil energy spectrum

â only with very few “reconstructed-input” data points

o For heavy mχ:

â large statistical fluctuation of and uncertainty on mχ,rec

â only with “reconstructed-input” data points in the low-velocity range

o With a small fraction of unrejected background events
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Thank you very much for your attention!
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