Chung-Lin Shan

Astroparticle Physics 2014, Amsterdam June 27, 2014

Based on arXiv:1403.5610

Motivation

Bayesian reconstruction of the WIMP velocity distribution function Formalism Numerical results

Tiresearch

Motivation

Differential event rate for elastic WIMP-nucleus scattering

$$\frac{dR}{dQ} = \mathcal{A}F^{2}(Q)\int_{v_{\min}(Q)}^{v_{\max}} \left[\frac{f_{1}(v)}{v}\right] dv$$

Here

$$v_{\min}(Q) = \alpha \sqrt{Q}$$

is the minimal incoming velocity of incident WIMPs that can deposit the recoil energy Q in the detector,

$$\mathcal{A} \equiv \frac{\rho_0 \sigma_0}{2m_{\chi} m_{\rm r,N}^2} \qquad \qquad \alpha \equiv \sqrt{\frac{m_{\rm N}}{2m_{\rm r,N}^2}} \qquad \qquad m_{\rm r,N} = \frac{m_{\chi} m_{\rm N}}{m_{\chi} + m_{\rm N}}$$

 ρ_0 : WIMP density near the Earth σ_0 : total cross section ignoring the form factor suppression F(Q): elastic nuclear form factor $f_1(v)$: one-dimensional velocity distribution of halo WIMPs

Reconstruction of the WIMP velocity distribution

Normalized one-dimensional WIMP velocity distribution function

$$f_{1}(\mathbf{v}) = \mathcal{N} \left\{ -2Q \cdot \frac{d}{dQ} \left[\frac{1}{F^{2}(Q)} \left(\frac{dR}{dQ} \right) \right] \right\}_{Q=\mathbf{v}^{2}/\alpha^{2}}$$
$$\mathcal{N} = \frac{2}{\alpha} \left\{ \int_{0}^{\infty} \frac{1}{\sqrt{Q}} \left[\frac{1}{F^{2}(Q)} \left(\frac{dR}{dQ} \right) \right] dQ \right\}^{-1}$$

Moments of the velocity distribution function

$$\langle \mathbf{v}^{n} \rangle = \mathcal{N}(Q_{\text{thre}}) \left(\frac{\alpha^{n+1}}{2}\right) \left[\frac{2Q_{\text{thre}}^{(n+1)/2}}{F^{2}(Q_{\text{thre}})} \left(\frac{dR}{dQ}\right)_{Q=Q_{\text{thre}}} + (n+1)I_{n}(Q_{\text{thre}})\right]$$
$$\mathcal{N}(Q_{\text{thre}}) = \frac{2}{\alpha} \left[\frac{2Q_{\text{thre}}^{1/2}}{F^{2}(Q_{\text{thre}})} \left(\frac{dR}{dQ}\right)_{Q=Q_{\text{thre}}} + I_{0}(Q_{\text{thre}})\right]^{-1}$$
$$I_{n}(Q_{\text{thre}}) = \int_{Q_{\text{thre}}}^{\infty} Q^{(n-1)/2} \left[\frac{1}{F^{2}(Q)} \left(\frac{dR}{dQ}\right)\right] dQ$$

[M. Drees and CLS, JCAP 0706, 011 (2007)]

Reconstruction of the WIMP velocity distribution

 \Box Ansatz: the measured recoil spectrum in the *n*th *Q*-bin

$$\left(\frac{dR}{dQ}\right)_{\text{expt, }Q\simeq Q_n} \equiv r_n \, e^{k_n (Q-Q_{s,n})} \qquad r_n \equiv \frac{N_n}{b_n}$$

Reconstruction of the WIMP velocity distribution

\Box Ansatz: the measured recoil spectrum in the *n*th *Q*-bin

$$\left(\frac{dR}{dQ}\right)_{\text{expt, }Q\simeq Q_n} \equiv r_n \, e^{k_n (Q-Q_{s,n})} \qquad r_n \equiv \frac{N_n}{b_n}$$

 \Box Logarithmic slope and shifted point in the *n*th *Q*-bin

$$\overline{Q - Q_n}|_n \equiv \frac{1}{N_n} \sum_{i=1}^{N_n} (Q_{n,i} - Q_n) = \left(\frac{b_n}{2}\right) \operatorname{coth}\left(\frac{k_n b_n}{2}\right) - \frac{1}{k_n}$$
$$Q_{s,n} = Q_n + \frac{1}{k_n} \ln\left[\frac{\sinh(k_n b_n/2)}{k_n b_n/2}\right]$$

Reconstruction of the WIMP velocity distribution

\Box Ansatz: the measured recoil spectrum in the *n*th *Q*-bin

$$\left(\frac{dR}{dQ}\right)_{\text{expt, }Q\simeq Q_n} \equiv r_n \, e^{k_n(Q-Q_{s,n})} \qquad r_n \equiv \frac{N_n}{b_n}$$

 \Box Logarithmic slope and shifted point in the *n*th *Q*-bin

$$\overline{Q - Q_n}|_n \equiv \frac{1}{N_n} \sum_{i=1}^{N_n} (Q_{n,i} - Q_n) = \left(\frac{b_n}{2}\right) \operatorname{coth}\left(\frac{k_n b_n}{2}\right) - \frac{1}{k_n}$$
$$Q_{s,n} = Q_n + \frac{1}{k_n} \ln\left[\frac{\sinh(k_n b_n/2)}{k_n b_n/2}\right]$$

Reconstructing the one-dimensional WIMP velocity distribution

$$f_{1}(\mathbf{v}_{s,n}) = \mathcal{N}\left[\frac{2Q_{s,n}r_{n}}{F^{2}(Q_{s,n})}\right] \left[\frac{d}{dQ}\ln F^{2}(Q)\Big|_{Q=Q_{s,n}} - k_{n}\right]$$
$$\mathcal{N} = \frac{2}{\alpha}\left[\sum_{a}\frac{1}{\sqrt{Q_{a}}F^{2}(Q_{a})}\right]^{-1} \qquad \mathbf{v}_{s,n} = \alpha\sqrt{Q_{s,n}}$$
[M. Dress and

[M. Drees and CLS, JCAP 0706, 011 (2007)]

Reconstruction of the WIMP velocity distribution

- **\Box** Reconstructed $f_{1,rec}(v_{s,n})$
 - (⁷⁶Ge, 500 events, 5 bins, up to 3 bins per window)

Bayesian Reconstruction of the WIMP Velocity Distribution Function from Direct DM Detection Data Bayesian reconstruction of the WIMP velocity distribution function

Bayesian reconstruction of the WIMP velocity distribution function

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

Bayesian analysis

$$p(\Theta|data) = rac{p(data|\Theta)}{p(data)} \cdot p(\Theta)$$

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

 □ Bayesian analysis
 p(⊖|data) = p(data|⊖)/p(data) · p(⊖)
 → ⊖: {a₁, a₂, · · · , a_{NBayesian}}, a specified (combination of the) value(s) of the fitting parameter(s)

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

- Bayesian analysis
 - $p(\Theta|\mathsf{data}) = \frac{p(\mathsf{data}|\Theta)}{p(\mathsf{data})} \cdot p(\Theta)$
 - $\succ \Theta: \{a_1, a_2, \cdots, a_{N_{\text{Bayesian}}}\}, \text{ a specified (combination of the) value(s) of the fitting parameter(s)}$
 - > p(⊖): prior probability, our degree of belief about ⊖ being the true value(s) of fitting parameter(s), often given in form of the (multiplication of the) probability distribution(s) of the fitting parameter(s)

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

D Probability distribution functions for $p(\Theta)$

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

- **\Box** Probability distribution functions for $p(\Theta)$
 - > Without prior knowledge about the fitting parameter
 - Flat-distributed

$$\mathsf{p}_i(\mathbf{a}_i) = 1$$
 for $a_{i,\min} \le a_i \le a_{i,\max},$

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

- Probability distribution functions for $p(\Theta)$
 - > Without prior knowledge about the fitting parameter
 - Flat-distributed

$$\mathsf{p}_i(a_i) = 1$$
 for $a_{i,\min} \le a_i \le a_{i,\max},$

- > With prior knowledge about the fitting parameter
 - \triangleright Around a theoretical predicted/estimated or experimental measured value $\mu_{{\rm a},i}$
 - \Rightarrow With (statistical) uncertainties $\sigma_{a,i}$
 - Gaussian-distributed

$$p_i(a_i; \mu_{a,i}, \sigma_{a,i}) = \frac{1}{\sqrt{2\pi} \sigma_{a,i}} e^{-(a_i - \mu_{a,i})^2 / 2\sigma_{a,i}^2}$$

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

- Bayesian analysis
 - $p(\Theta|\mathsf{data}) = \frac{p(\mathsf{data}|\Theta)}{p(\mathsf{data})} \cdot p(\Theta)$
 - $\succ \Theta: \{a_1, a_2, \cdots, a_{N_{\text{Bayesian}}}\}, \text{ a specified (combination of the) value(s) of the fitting parameter(s)}$
 - > p(⊖): prior probability, our degree of belief about ⊖ being the true value(s) of fitting parameter(s), often given in form of the (multiplication of the) probability distribution(s) of the fitting parameter(s)
 - p(data): evidence, the total probability of obtaining the particular set of data

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

- Bayesian analysis
 - $p(\Theta|\mathsf{data}) = \frac{p(\mathsf{data}|\Theta)}{p(\mathsf{data})} \cdot p(\Theta)$
 - $\succ \Theta: \{a_1, a_2, \cdots, a_{N_{\text{Bayesian}}}\}, \text{ a specified (combination of the) value(s) of the fitting parameter(s)}$
 - > p(⊖): prior probability, our degree of belief about ⊖ being the true value(s) of fitting parameter(s), often given in form of the (multiplication of the) probability distribution(s) of the fitting parameter(s)
 - p(data): evidence, the total probability of obtaining the particular set of data
 - > p(data|⊖): the probability of the observed result, once the specified (combination of the) value(s) of the fitting parameter(s) happens, usually be described by the "likelihood" function of ⊖, L(⊖).

- Bayesian reconstruction of the WIMP velocity distribution function
 - Formalism

Formalism

□ Likelihood function for $p(data|\Theta)$

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

- □ Likelihood function for $p(data|\Theta)$
 - > Theoretical one-dimensional WIMP velocity distribution function: $f_{1,th}(v; a_1, a_2, \cdots, a_{N_{Bayesian}})$

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

- □ Likelihood function for $p(data|\Theta)$
 - > Theoretical one-dimensional WIMP velocity distribution function: $f_{1,th}(v; a_1, a_2, \cdots, a_{N_{Bayesian}})$
 - Assuming that the reconstructed data points are Gaussian-distributed around the theoretical predictions

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Ticesearch

Formalism

- □ Likelihood function for $p(data|\Theta)$
 - > Theoretical one-dimensional WIMP velocity distribution function: $f_{1,th}(v; a_1, a_2, \cdots, a_{N_{Bayesian}})$
 - Assuming that the reconstructed data points are Gaussian-distributed around the theoretical predictions

$$\mathcal{L}\left(f_{1,\text{rec}}(\mathbf{v}_{s,\mu}), \ \mu = 1, \ 2, \ \cdots, \ W; \ \mathbf{a}_{i}, \ i = 1, \ 2, \ \cdots, \ N_{\text{Bayesian}}\right)$$
$$\equiv \prod_{\mu=1}^{W} \text{Gau}\left(\mathbf{v}_{s,\mu}, f_{1,\text{rec}}(\mathbf{v}_{s,\mu}), \sigma_{f_{1},s,\mu}; \mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{N_{\text{Bayesian}}}\right)$$

with

$$\begin{aligned} \mathsf{Gau}\Big(\mathsf{v}_{\mathsf{s},\mu}, f_{1,\mathsf{rec}}(\mathsf{v}_{\mathsf{s},\mu}), \sigma_{f_{1},\mathsf{s},\mu}; \mathfrak{a}_{1}, \mathfrak{a}_{2}, \cdots, \mathfrak{a}_{\mathsf{N}_{\mathsf{Bayesian}}}\Big) \\ \equiv & \frac{1}{\sqrt{2\pi}\,\sigma_{f_{1},\mathsf{s},\mu}} \, e^{-\left[f_{1,\mathsf{rec}}(\mathsf{v}_{\mathsf{s},\mu}) - f_{1,\mathsf{th}}(\mathsf{v}_{\mathsf{s},\mu};\mathfrak{a}_{1},\mathfrak{a}_{2}, \cdots, \mathfrak{a}_{\mathsf{N}_{\mathsf{Bayesian}}})\right]^{2}/2\sigma_{f_{1},\mathsf{s},\mu}^{2}} \end{aligned}$$

Bayesian reconstruction of the WIMP velocity distribution function

- Formalism

Formalism

- Bayesian analysis
 - $p(\Theta|\mathsf{data}) = \frac{p(\mathsf{data}|\Theta)}{p(\mathsf{data})} \cdot p(\Theta)$
 - $\succ \Theta: \{a_1, a_2, \cdots, a_{N_{\text{Bayesian}}}\}, \text{ a specified (combination of the) value(s) of the fitting parameter(s)}$
 - > p(⊖): prior probability, our degree of belief about ⊖ being the true value(s) of fitting parameter(s), often given in form of the (multiplication of the) probability distribution(s) of the fitting parameter(s)
 - p(data): evidence, the total probability of obtaining the particular set of data
 - > p(data|⊖): the probability of the observed result, once the specified (combination of the) value(s) of the fitting parameter(s) happens, usually be described by the "likelihood" function of ⊖, L(⊖).
 - > p(⊖|data): posterior probability density function for ⊖, the probability of that the specified (combination of the) value(s) of the fitting parameter(s) happens, given the observed result

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

- Bayesian reconstruction of the WIMP velocity distribution function
 - -Numerical results

Numerical results

- Input and fitting one-dimensional WIMP velocity distribution functions
 - > "One-parameter" shifted Maxwellian velocity distribution

$$f_{1,sh,v_0}(v) = \frac{1}{\sqrt{\pi}} \left(\frac{v}{v_0 v_e} \right) \left[e^{-(v-v_e)^2/v_0^2} - e^{-(v+v_e)^2/v_0^2} \right] \qquad v_e = 1.05 v_0$$

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

- Input and fitting one-dimensional WIMP velocity distribution functions
 - > "One-parameter" shifted Maxwellian velocity distribution

$$f_{1,sh,v_0}(v) = \frac{1}{\sqrt{\pi}} \left(\frac{v}{v_0 v_e} \right) \left[e^{-(v-v_e)^2/v_0^2} - e^{-(v+v_e)^2/v_0^2} \right] \qquad v_e = 1.05 v_0$$

> Shifted Maxwellian velocity distribution

$$f_{1,sh}(v) = \frac{1}{\sqrt{\pi}} \left(\frac{v}{v_0 v_e} \right) \left[e^{-(v-v_e)^2/v_0^2} - e^{-(v+v_e)^2/v_0^2} \right]$$

> "Variated" shifted Maxwellian velocity distribution

$$f_{1,\mathsf{sh},\Delta\nu}(\nu) = \frac{1}{\sqrt{\pi}} \left[\frac{\nu}{\nu_0 \left(\nu_0 + \Delta\nu\right)} \right] \left\{ e^{-\left[\nu - (\nu_0 + \Delta\nu)\right]^2 / \nu_0^2} - e^{-\left[\nu + (\nu_0 + \Delta\nu)\right]^2 / \nu_0^2} \right\}$$

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

- Input and fitting one-dimensional WIMP velocity distribution functions
 - > "One-parameter" shifted Maxwellian velocity distribution

$$f_{1,sh,v_0}(v) = \frac{1}{\sqrt{\pi}} \left(\frac{v}{v_0 v_e} \right) \left[e^{-(v-v_e)^2/v_0^2} - e^{-(v+v_e)^2/v_0^2} \right] \qquad v_e = 1.05 v_0$$

> Shifted Maxwellian velocity distribution

$$f_{1,sh}(v) = \frac{1}{\sqrt{\pi}} \left(\frac{v}{v_0 v_e} \right) \left[e^{-(v-v_e)^2/v_0^2} - e^{-(v+v_e)^2/v_0^2} \right]$$

> "Variated" shifted Maxwellian velocity distribution

$$f_{1,\mathsf{sh},\Delta\nu}(\nu) = \frac{1}{\sqrt{\pi}} \left[\frac{\nu}{\nu_0 \left(\nu_0 + \Delta\nu\right)} \right] \left\{ e^{-\left[\nu - (\nu_0 + \Delta\nu)\right]^2 / \nu_0^2} - e^{-\left[\nu + (\nu_0 + \Delta\nu)\right]^2 / \nu_0^2} \right\}$$

Simple Maxwellian velocity distribution

$$f_{1,\text{Gau}}(v) = rac{4}{\sqrt{\pi}} \left(rac{v^2}{v_0^3}
ight) e^{-v^2/v_0^2}$$

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Tresearch

Numerical results

- Input and fitting one-dimensional WIMP velocity distribution functions
 - > "One-parameter" shifted Maxwellian velocity distribution

$$f_{1,sh,v_0}(v) = \frac{1}{\sqrt{\pi}} \left(\frac{v}{v_0 v_e} \right) \left[e^{-(v-v_e)^2/v_0^2} - e^{-(v+v_e)^2/v_0^2} \right] \qquad v_e = 1.05 v_0$$

> Shifted Maxwellian velocity distribution

$$f_{1,sh}(v) = \frac{1}{\sqrt{\pi}} \left(\frac{v}{v_0 v_e} \right) \left[e^{-(v-v_e)^2/v_0^2} - e^{-(v+v_e)^2/v_0^2} \right]$$

> "Variated" shifted Maxwellian velocity distribution

$$f_{1,\mathsf{sh},\Delta\nu}(\nu) = \frac{1}{\sqrt{\pi}} \left[\frac{\nu}{\nu_0 \left(\nu_0 + \Delta\nu\right)} \right] \left\{ e^{-\left[\nu - (\nu_0 + \Delta\nu)\right]^2 / \nu_0^2} - e^{-\left[\nu + (\nu_0 + \Delta\nu)\right]^2 / \nu_0^2} \right\}$$

Simple Maxwellian velocity distribution

$$f_{1, \mathsf{Gau}}(v) = rac{4}{\sqrt{\pi}} \left(rac{v^2}{v_0^3}
ight) e^{-v^2/v_0^2}$$

"Modified" simple Maxwellian velocity distribution

$$f_{1,Gau,k}(v) = \frac{v^2}{N_{f,k}} \left(e^{-v^2/kv_0^2} - e^{-v_{max}^2/kv_0^2} \right)^k \quad \text{for } v \le v_{max}$$

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

• Reconstructed $f_{1,Bayesian}(v)$ with an input WIMP mass

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,sh,v_0}(v) \Rightarrow f_{1,sh,v_0}(v)$, flat-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

• Reconstructed $f_{1,Bayesian}(v)$ with an input WIMP mass

 $(^{76}\text{Ge}, 0 - 100 \text{ keV}, 500 \text{ events}, m_{\chi} = 100 \text{ GeV}, f_{1,\text{sh},v_0}(v) \Rightarrow f_{1,\text{sh},v_0}(v), \text{ flat-dist.})$

[CLS, arXiv:1403.5610]

Bayesian reconstruction of the WIMP velocity distribution function

Numerical results

Tipesearch

Numerical results

 \Box Distribution of the reconstructed v_0

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,sh,\nu_0}(\nu) \Rightarrow f_{1,sh,\nu_0}(\nu)$, flat-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

Reconstructed $f_{1,\text{Bayesian}}(v)$ with an input WIMP mass

 $(^{76}\text{Ge}, 0 - 100 \text{ keV}, 500 \text{ events}, m_{\chi} = 100 \text{ GeV}, f_{1,\text{sh},v_0}(v) \Rightarrow f_{1,\text{sh},v_0}(v)$, Gaussian-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Tipesearch

Numerical results

 \Box Distribution of the reconstructed v_0

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,sh,v_0}(v) \Rightarrow f_{1,sh,v_0}(v)$, Gaussian-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

a Reconstructed $f_{1,\text{Bayesian}}(v)$ with an input WIMP mass

 $(^{76}\text{Ge}, 0 - 100 \text{ keV}, 500 \text{ events}, m_{\chi} = 100 \text{ GeV}, f_{1,\text{sh},\nu_0}(\nu) \Rightarrow f_{1,\text{sh}}(\nu), \text{Gaussian-dist.})$

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

Distribution of the reconstructed $v_0 - v_e$

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,sh,v_0}(v) \Rightarrow f_{1,sh}(v)$, Gaussian-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Tresearch

Numerical results

 \Box Distribution of the reconstructed v_0

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,sh,v_0}(v) \Rightarrow f_{1,sh}(v)$, Gaussian-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Tresearch

Numerical results

 \Box Distribution of the reconstructed v_e

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,sh,\nu_0}(v) \Rightarrow f_{1,sh}(v)$, Gaussian-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

• Reconstructed $f_{1,\text{Bayesian}}(v)$ with an input WIMP mass

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,\text{sh},\nu_0}(v) \Rightarrow f_{1,\text{sh},\Delta\nu}(v)$, Gaussian-dist.)

- Bayesian reconstruction of the WIMP velocity distribution function
 - -Numerical results

Numerical results

- **Distribution** of the reconstructed $v_0 \Delta v$
 - (⁷⁶Ge, 0 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,\text{sh},\nu_0}(v) \Rightarrow f_{1,\text{sh},\Delta\nu}(v)$, Gaussian-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

 \Box Distribution of the reconstructed v_0

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,sh,\nu_0}(v) \Rightarrow f_{1,sh,\Delta\nu}(v)$, Gaussian-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

 \Box Distribution of the reconstructed Δv

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,sh,v_0}(v) \Rightarrow f_{1,sh,\Delta v}(v)$, Gaussian-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

-Numerical results

Numerical results

□ Reconstructed $f_{1,\text{Bayesian}}(v)$ with an input WIMP mass (⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,\text{sh},v_0}(v) \Rightarrow f_{1,\text{Gau}}(v)$, flat-dist.)

Bayesian reconstruction of the WIMP velocity distribution function

Numerical results

Numerical results

 \Box Distribution of the reconstructed v_0

(⁷⁶Ge, 0 - 100 keV, 500 events, $m_{\chi} = 100$ GeV, $f_{1,sh,v_0}(v) \Rightarrow f_{1,Gau}(v)$, flat-dist.)

- \Box By using Bayesian analysis/fitting one could reconstruct $f_1(v)$ very precisely:
 - > small or even negligible systematic deviations of v_0 , v_e and the peak position of $f_1(v)$
 - → 1σ statistical uncertainties of $\lesssim 20$ km/s on v_0 , v_e and the peak position of $f_1(v)$

- **D** By using Bayesian analysis/fitting one could reconstruct $f_1(v)$ very precisely:
 - > small or even negligible systematic deviations of v_0 , v_e and the peak position of $f_1(v)$
 - → 1σ statistical uncertainties of $\lesssim 20$ km/s on v_0 , v_e and the peak position of $f_1(v)$
- With prior knowledge about fitting parameters
 - systematic deviations and statistical uncertainties could be reduced (significantly)
 - > even when the expected values are (slightly) incorrect

- **D** By using Bayesian analysis/fitting one could reconstruct $f_1(v)$ very precisely:
 - > small or even negligible systematic deviations of v_0 , v_e and the peak position of $f_1(v)$
 - > 1σ statistical uncertainties of $\lesssim 20$ km/s on v_0 , v_e and the peak position of $f_1(v)$
- With prior knowledge about fitting parameters
 - systematic deviations and statistical uncertainties could be reduced (significantly)
 - > even when the expected values are (slightly) incorrect
- **Using variated analytic form of the same fitting** $f_1(v)$
 - > systematic deviations could be reduced (significantly)
 - statistical uncertainties might however be (a bit) larger

- **Using an improper fitting** $f_1(v)$
 - > information about the true velocity distribution function (e.g. the peak position of $f_1(v)$) could still be reconstructed approximately
 - > with clearly $2\sigma 6\sigma$ deviations of v_0 and v_e from the theoretical expections

- **Using an improper fitting** $f_1(v)$
 - > information about the true velocity distribution function (e.g. the peak position of $f_1(v)$) could still be reconstructed approximately
 - > with clearly $2\sigma 6\sigma$ deviations of v_0 and v_e from the theoretical expections
- For light m_{χ} :
 - > (very) shape recoil energy spectrum
 - > only with very few "reconstructed-input" data points

- **Using an improper fitting** $f_1(v)$
 - > information about the true velocity distribution function (e.g. the peak position of $f_1(v)$) could still be reconstructed approximately
 - > with clearly $2\sigma 6\sigma$ deviations of v_0 and v_e from the theoretical expections
- For light m_{χ} :
 - > (very) shape recoil energy spectrum
 - > only with very few "reconstructed-input" data points
- **G** For heavy m_{χ} :
 - \succ large statistical fluctuation of and uncertainty on $m_{\chi, {
 m rec}}$
 - \succ only with "reconstructed-input" data points in the low-velocity range

- Using an improper fitting $f_1(v)$
 - > information about the true velocity distribution function (e.g. the peak position of $f_1(v)$) could still be reconstructed approximately
 - > with clearly $2\sigma 6\sigma$ deviations of v_0 and v_e from the theoretical expections
- For light m_{χ} :
 - > (very) shape recoil energy spectrum
 - > only with very few "reconstructed-input" data points
- **G** For heavy m_{χ} :
 - $\succ\,$ large statistical fluctuation of and uncertainty on $m_{\chi,{\rm rec}}$
 - \succ only with "reconstructed-input" data points in the low-velocity range
- □ With a small fraction of unrejected background events

Thank you very much for your attention!