Searches for beyond the Standard Model Higgs bosons in ATLAS & CMS

Johann Collot LPSC Université Grenoble-Alpes, CNRS/IN2P3

On behalf of the ATLAS & CMS collaborations

Collider physics : all Standard Model consistent A marvellous & much acclaimed achievement of modern science

Collider physics : all Standard Model consistent A marvellous & much acclaimed achievement of modern science

Cosmology, astrophysics & : many long-lasting puzzles astroparticle

- matter-antimatter asymmetry
- dark matter
- dark energy
- · cosmic inflation
- neutrino masses & oscillations

Collider physics : all Standard Model consistent A marvellous & much acclaimed achievement of modern science

Can the physics of fundamental scalar field(s) help to bridge these two domains ?

Cosmology, astrophysics & : many long-lasting puzzles astroparticle

- matter-antimatter asymmetry
- dark matter
- dark energy
- · cosmic inflation
- neutrino masses & oscillations

Many theorists say yes

- In general, any extension of SM comes with extra scalar fields and Higgses
- Extra scalar singlets
- More scalar doublets like in 2 Higgs Doublet Models (2HDM)
- Supersymmetry : MSSM, NMSSM...
- Extra scalar triplets
- Inflaton

Search strategies

 Indirect search through careful studies of 125 GeV
EBH boson properties & decays

+ sub-dominant production channels : VBF, VH, ttH...

Direct search from decays of extra neutral or charged Higgs(es)

(associated production may also significantly contribute)

Probe mass scaling of observed h couplings

• General consistency test of observed h decay rates in all channels with respect to SM

Couplings to fermions (f) and vector bosons (v) scale like :

 $k_{\rm f,i} = v \frac{m_{\rm f,i}^{\rm e}}{M^{1+\epsilon}}$

 $k_{v,j} = v \frac{m_{v,j}^{2\epsilon}}{M^{1+2\epsilon}}$

linear mass dependence

quadratic mass dependence

$$SM \Rightarrow \epsilon = 0, M = v = 246 \text{ GeV}$$

Best fit agrees with SM at 1.5 σ

ATLAS-CONF-2014-010 Ellis & You, JHEP 1306 (2013) 103

Could observed h be composite ?

Minimal Composite Higgs Models – Scaling factors times SM couplings

ATLAS-CONF-2014-010 K. Agashe et al., Nucl.Phys. B719 (2005) 165 R. Contino, Phys. Rev. D75 (2007) 055014 M.S. Carena et al. Phys. Rev. D76 (2007) 035006 MCHM4 : $k = k_v = k_f = \sqrt{1 - \epsilon}$, with $\epsilon = v^2/f^2$

f is the h compositeness scale $SM: f \to \infty, \epsilon=0$

 $f > 710 \text{GeV} \text{ or } 0 \leq \epsilon < 0.12@95 \text{ CL}$

MCHM5 : $\kappa_{v} = \sqrt{1-\epsilon}$, and $\kappa_{e} = \frac{1-2\epsilon}{\sqrt{1-\epsilon}}$

f > 640 GeV or $0 \le \epsilon < 0.15 @ 95 \text{ CL}$

Extra EW scalar singlet in data ?

- Assume the addition of a scalar singlet that mixes with doublet state after SSB to produce two neutral Higgses : h & H
- Assume both couple to f and V in a similar way as SM but with a strength reduced by K & K' scale factors, for h & H respectively

Extra EW scalar singlet in data ?

Similar limits were obtained with CMS in direct & indirect searches

H-> ZZ -> 2 | 2 V

H-> WW -> lv qq'

Johann Collot, on behalf of ATLAS & CMS

2HDM reminder

- 8 initial degrees of freedom
 - 3 eaten by W_{L} 's and Z_{L}
 - 3 neutral Higgses and 2 charged ones (H+, H-)
- CP conservation and Paschos-Glashow-Weinberg condition :
 - 2 CP-even neutrals : h & H, I CP-odd neutral A, H+, H-
 - 4 Higgs masses, $\tan \beta = v_u/v_d$, $\alpha : h \& H$ mixing angle

$$- v_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{ GeV})^{2}$$

	coupling scale factor of h /SM	type I fermiophobic	type II MSSM like	type III lepton-specific	type IV flipped
gauge bosons	K,	sin(β-α)	$\sin(\beta - \alpha)$	sin(β-α)	sin(β-α)
up quarks	K,	cos(α)/sin(β)	cos(α)/sin(β)	cos(α)/sin(β)	cos(α)/sin(β)
down quarks	K _d	cos(α)/sin(β)	$-sin(\alpha)/cos(\beta)$	cos(α)/sin(β)	-sin(α)/cos(β)
charged leptons	K,	cos(α)/sin(β)	$-sin(\alpha)/cos(\beta)$	$-sin(\alpha)/cos(\beta)$	cos(α)/sin(β)

G. Branco et al :arXiv:1106.0034 [hep-ph].

Additional scalar doublet in data ?

Simplified MSSM

 In such a model, coupling scale factors are expressed as functions of m_A and tanβ.

direct search for H->hh & A->Zh

- for $m_{\mu} > 2 m_{h}$ and $2 m_{h} < m_{A} < 2 m_{t}$, these decays are predominant
- h decays like in SM, leads to multilepton and diphoton signatures further categorized as in table below

Johann Collot, on behalf of ATLAS & CMS

Direct search for MSSM h,H,A-> 2 taus

Direct search for $\Phi \rightarrow 2$ taus

same analyzed data interpreted in a model independent way

direct search of X -> hh -> 2y 2b

- search for a new hh resonance in the my region 260-1100 GeV
- combines high bb BR with better background rejection capability & resolution of yy peak.
- search in the m_w spectrum for m_x < 400 GeV and in m_{yii} spectrum for m_x > 400 GeV

CMS-PAS-13-032

 2γ

2b

Х

direct search of X -> hh -> 2y 2b

- Model-independent upper limit •
- Prediction lines of several Wrapped Extra Dimension models also shown •

CMS-PAS-13-032

C. Csaki et al. : arXiv hep-th/0008151

L. Randall & R. Sundrum ; arXiv hep-ph/9905221

T. Hapola and O. Antipin : http://cp3-origins.dk/research/units/ed-tools

P. Aquino : http://feynrules.irmp.ucl.ac.be/wiki/RSmodel

A. L. Fitzpatrick et al. : arXiv hep-ph/0701150

G. F. Giudice et al. : arXiv hep-ph/0002178

26 June 2014

Johann Collot, on behalf of ATLAS & CMS

Model-independent search for H -> 2 photons

Direct search for charged Higgs

H⁺ → T⁺ V_⊥

 $\times 10^3$

1.8

1.6

1.2

0.8

0.6 0.4

0.2

0

Events / 20 GeV

tau (had) +jets channel •

0

100

400

500

600

m_⊤ [GeV]

300

200

100

ATLAS-CONF-2013-090

400

500

600

 m_{T} [GeV]

300

200

Direct search for charged Higgs

interpreted in a model-independent way

Production cross section of heavy charged Higgs < 1 pb

ATLAS-CONF-2013-090

Run II prospects

tan β

ATLAS-PHYS-PUB-2013-016 ATLAS-PHYS-PUB-2013-015 ATLAS-PHYS-PUB-2013-014

"Precision" coupling measurements

26 June 2014

Conclusion

- LHC Run I has promoted fundamental scalar fields to credible physical entities.
 It would be strange that nature has made the Higgs boson a unique child !
- Run II has the potential to help us bridge micro & macro physics.

Backup slides

Bibliography

- Limits on new phenomena via coupling measurements : ATLAS-CONF-2014-010, CMS-PAS-HIG-13-005
- Direct searches :
 - CMS-PAS-HIG-14-001, CMS-PAS-HIG-13-034, CMS-PAS-HIG-13-025
 - CMS-PAS-HIG-13-032, CMS-PAS-HIG-13-024, CMS-PAS-HIG-13-010
 - ATLAS-CONF-2014-005, ATLAS-CONF-2013-027, ATLAS-CONF-2013-090
 - ATLAS-CONF-2012-079, ATLAS-CONF-2012-013
 - PRL 108 (2012) 251801, Phys. Lett. B721 (2013) 32, New J. Phys. 15(2013) 043009
 - Eur. Phys. J. C72 (2012) 2244, JHEP02 (2013) 095
 - arXiv : 1312.1956 , 1210.5070 , 1207.2666

direct search for H->hh & A->Zh

- $m_{H} > 2 m_{h}$ then H->hh ; $2 m_{h} < m_{A} < 2 m_{t}$ then A-> Zh predominantly
- h decays like in SM ; multilepton and diphoton signatures

direct search for H->hh & A->Zh

$y_{2 \mathrm{HDM}}/y_{\mathrm{SM}}$	2HDM I	2HDM II
hVV	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
hQu	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
hQd	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
hLe	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
HVV	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
HQu	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$
HQd	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
HLe	$\sin\alpha/{\sin\beta}$	$\cos \alpha / \cos \beta$
AVV	0	0
AQu	$\cot \beta$	$\cot eta$
AQd	$-\cot\beta$	$\tan \beta$
ALe	$-\cot\beta$	$\tan\beta$

CMS-PAS-HIG-13-025

N. Craig et al. : arXiv:1210.0559.

for $m_{H} = m_{A} = 300$ GeV and type I & II 2HDMs

Johann Collot, on behalf of ATLAS & CMS

Invisible decays of a BSM Higgs

Predicted branching ratio of SM Higgs invisible decay = 1.3 10-3 (h-> Z Z* -> 4 v)

Probing production of a Higgs boson produced in association with a Z that would predominantly decay into invisible particles : Z H -> 2 charged leptons + E_miss

L. Lopez-Honorez et al. : Ohys. Lett. B716 (2012) 179, arXiv:1203.2064 [hep-ph]

S. Kanemura et al. : Phys.Rev. D82 (2010) 055026, arXiv : 1005.5661 [hep-ph] P.J. Fox et al. : Phys. ReV. D85 (2012) 056011, arXiv : 1109.4398 [hep-ph] A. Djouadi et al. : Phys. Lett. B709 (2012) 65, arXiv:1112.3288 [hep-ph)

B. Patt & F. Wilczek : arXiv : hep-ph/0605188

