

Model Independent Measurements of Angular Power Spectra

Sheldon Campbell

The Ohio State University

GRAPPA Institute, University of Amsterdam July 2, 2014

The Ohio State University

Observing "Points" in the Sky

High-Energy Radiation Events

- Gamma-Rays
- Cosmic Ray Shower Events
- Cosmic Neutrinos
- Celestial Objects
 - Galaxies
 - AGN
 - X-ray Clusters

• • • •

Inference cosmic expansion history, large scale structure, galaxy formation, etc.

Inference radiation sources,

cosmic ray acceleration,

ray propagation, etc.

Potential radiation sources!

Specify distribution of a class of events/objects in the sky.

• objects in a redshift range, radiation events in an energy bin, etc.

Angular Distribution Methods

When point sources cannot be resolved,

the angular distribution of observed events approaches the angular distribution of sources (messenger-propagated and projected) on our sky (full skymap).

Sheldon Campbell, Model Indep. Meas. of Angular Power Spectra GRAPPA Seminar

Resolving Large Scale Structures

- single nearby source?
- sources pattern?
- structure in propagation medium?

Pierre Auger Cosmic Ray Events (black dots), E>55 EeV. Compared with VCV AGN catalog (blue dots).

Distinguishing Dense vs. Sparse

Dense Distributions, e.g.,

- radio galaxies
- dark matter annihilation

All events from different source.

Francisco-Shu Kitaura et al., MNRAS 427, L35 (2012)

Sparse Distributions, e.g.,

- active galactic nuclei
- local extragalactic structure

More sources with multiple events.

Given N events, what can we infer about the full skymap?

A Popular Measure of Angular Distribution: The Angular Power Spectrum

Intensity Angular Power Spectrum C_{ℓ}

$$I(E, \mathbf{n}) - \langle I(E) \rangle = \sum_{\ell, m} a_{\ell m}(E) Y_{\ell}^{m}(\mathbf{n}) \qquad C_{\ell}(E) = \frac{1}{2\ell + 1} \sum_{m} |a_{\ell m}(E)|^{2}$$

- Absolute intensity fluctuations.
- Monotonically increases as sources are added.

Fluctuation Angular Power Spectrum $\widetilde{C_{\ell}}$ $\frac{I(E, \mathbf{n}) - \langle I(E) \rangle}{\langle I(E) \rangle} = \sum_{\ell, m} \tilde{a}_{\ell m}(E) Y_{\ell}^{m}(\mathbf{n}) \qquad \widetilde{C_{\ell}}(E) = \frac{1}{2\ell + 1} \sum_{m} |\tilde{a}_{\ell m}(E)|^{2}$

- Relative intensity fluctuations.
- Constant for universal spectrum sources at fixed redshift.

Measurement of Diffuse Gamma-Ray C_{ℓ}

 First 22 months of Fermi-LAT data.

- Error-weighted means over $155 \le \ell \le 504$.
- This already places constraints on models of unresolved gamma-ray point sources.
- Level of precision means it is now important to carefully ensure all effects are properly taken into account.
- Sheldon Campbell, Model Indep. Meas. of Angular Power Spectra GRAPPA Seminar

The Problem

- Let \tilde{C}_{ℓ} be the fluctuation (normalized) APS of a **skymap**what we are trying to measure.
- Receive N events at random, weighted by the sky map.
- Assume full sky observations with uniform exposure.

A hypothetical projected skymap of sources.

The 2 micron sky courtesy of the 2MASS collaboration, http://www.ipac.caltech.edu/2mass/.

variance of $\tilde{C}_{\ell,N}$?

Angular Clustering of the Source Skymap

- Positive, real function on the sphere $F(\mathbf{n})$.
- Normalize: Let $S(n) = \frac{F(n)}{\langle F \rangle} 1$.
- Normalized spherical transform:

$$\tilde{a}_{\ell m} = \int d\boldsymbol{n} \, Y^*_{\ell m}(\boldsymbol{n}) S(\boldsymbol{n})$$

Angular power spectrum:

$$\tilde{C}_{\ell} = \sum_{m=-\ell}^{\ell} |\tilde{a}_{\ell m}|^2$$

n

• Angular bispectrum:

$$\tilde{B}_{\ell_1 \ell_2 \ell_3} = \sum_{m_1, m_2, m_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \tilde{a}_{\ell_1 m_1} \tilde{a}_{\ell_2 m_2} \tilde{a}_{\ell_3 m_3}$$

Special Case: Pure Isotropic Source

Receive N events at uniformly random positions.

$$\tilde{a}_{\ell m,N} = \frac{4\pi}{N} \sum_{i=1}^{N} Y_{\ell m}^{*}(\hat{n}_{i}) \qquad \tilde{C}_{\ell,N} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \tilde{a}_{\ell m,N} \right|^{2}$$

$$\langle \tilde{C}_{\ell,N} \rangle = \tilde{C}_{P,N} = \frac{4\pi}{N}$$

Shot noise/Poisson noise.

$$\sigma_{\tilde{C}_{\ell,N}} = \sqrt{\frac{2}{2\ell+1} \frac{4\pi}{N}}$$

 Sheldon Campbell, Model Indep. Meas. of Angular Power Spectra GRAPPA Seminar

Error Estimate with Anisotropic Source

Lesson from CMB: Cosmic Variance

- The dominant statistical uncertainty in CMB anisotropy.
 Cosmic Variance

 Unknown Initial Conditions
- Assuming the signal is randomly Gaussian distributed, then our estimator for \tilde{C}_{ℓ} is the maximum likelihood estimator with uncertainty:

$$\sigma_{\tilde{C}_{\ell}} = \sqrt{\frac{2}{2\ell+1}}\tilde{C}_{\ell}$$

 Sheldon Campbell, Model Indep. Meas. of Angular Power Spectra GRAPPA Seminar

"Rule of Thumb" Stat. Uncertainty Est.

- Angular power spectrum from "events".
- Assume sources are approximately Gaussian distributed.
- Shot noise is a bias to be subtracted from estimator.

$$\hat{\tilde{C}}_{\ell,N} = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} \left| \frac{4\pi}{N} \sum_{i=1}^{N} Y_{\ell m}^{*}(\boldsymbol{n}_{i}) \right|^{2} - \frac{4\pi}{N}$$
$$\sigma_{\hat{\tilde{C}}_{\ell,N}} = \sqrt{\frac{2}{2\ell + 1}} \left(\frac{4\pi}{N} + \tilde{C}_{\ell} \right)_{Knox, PRD52, 4307 (1995)}$$

The goal is to check these standard estimates.

Improving Our Understanding of the Statistical Variance

- Some conceptual difficulties with using the cosmic variance as we did.
 - Cosmic variance is a theoretical error, which applies when making physical inferences about our models based on data.
 - The angular power spectrum measurement should be able to be made independently of any model.
 - We should not need to assume the signal is Gaussiandistributed.
- Investigations have led to a new formula for the modelindependent statistical variance of the angular power spectrum of events from a background distribution.

Strategy for Calculation

Consider each event observed at position \hat{n}' but originated from position \hat{n} .

1) For fixed source positions \hat{n}_i , average over event position \hat{n}_i' , via the instrument point spread function.

Result of this step: what is being measured is the sky map convolved with the instrument PSF.

 Average the N events source positions, weighted by the skymap.

Statistical Mean

• The average measurement of $\tilde{C}_{\ell,N}$ from a random sample:

$$\left\langle \tilde{C}_{\ell,N} \right\rangle = \frac{4\pi}{N} + \left(1 - \frac{1}{N}\right) \tilde{C}_{\ell}$$

 \tilde{C}_{ℓ} is now APS of source skymap, convolved with instrument PSF.

- Angular power spectrum of events is a *biased* estimator of the source distribution.
- Therefore, an unbiased estimator $\hat{\tilde{C}}_{\ell,N}$ with $\langle \hat{\tilde{C}}_{\ell,N} \rangle = \tilde{C}_{\ell}$:

$$\hat{\tilde{C}}_{\ell,N} = \frac{1}{1 - \frac{1}{N}} \left[\tilde{C}_{\ell,N} - \frac{4\pi}{N} \right]$$

In agreement with previous estimates.

Statistical Variance of $\hat{\tilde{C}}_{\ell}$

$$\sigma_{\hat{C}_{\ell,N}}^2 = \frac{(4\pi)^2}{N(N-1)} \left[\frac{2}{2\ell+1} + 2\tilde{C}_{\ell}^{(2)} + 4(N-2) \frac{1}{4\pi} \left(\frac{\tilde{C}_{\ell}}{2\ell+1} + \tilde{C}_{\ell}^{(3)} \right) - (4N-6) \left(\frac{\tilde{C}_{\ell}}{4\pi} \right)^2 \right]$$

$$\tilde{C}_{\ell}^{(2)} = \sum_{\ell'=0}^{2\ell} \frac{2\ell'+1}{4\pi} \begin{pmatrix} \ell & \ell & \ell' \\ 0 & 0 & 0 \end{pmatrix}^2 \tilde{C}_{\ell'}$$

$$\tilde{C}_{\ell}^{(3)} = \frac{1}{2\ell+1} \sum_{\ell'=0}^{2\ell} \sqrt{\frac{2\ell'+1}{4\pi}} \begin{pmatrix} \ell & \ell & \ell' \\ 0 & 0 & 0 \end{pmatrix}} \tilde{B}_{\ell\ell\ell'}$$

 Sheldon Campbell, Model Indep. Meas. of Angular Power Spectra GRAPPA Seminar

Analytic Work Generated Higher Order Angular Spectra

$$\begin{split} \tilde{\mathcal{C}}_{\ell}^{(2)} &= \sum_{\ell'=0}^{2\ell} \frac{2\ell'+1}{4\pi} \binom{\ell}{0} \frac{\ell}{0} \frac{\ell'}{0}^2 \tilde{\mathcal{C}}_{\ell'} \\ \tilde{\mathcal{C}}_{\ell}^{(3)} &= \frac{1}{2\ell+1} \sum_{\ell'=0}^{2\ell} \sqrt{\frac{2\ell'+1}{4\pi}} \binom{\ell}{0} \frac{\ell}{0} \frac{\ell'}{0} \tilde{B}_{\ell\ell\ell'} \\ \tilde{\mathcal{C}}_{\ell}^{(4)} &= \tilde{\mathcal{C}}_{\ell}^2 \end{split}$$

I know two ways to see that \tilde{C}_{ℓ} is the first order angular spectrum, and that these comprise the complete set of 2nd order spectra.

Higher Order Spectra: Tensor Picture

First and Second Rank Spherical Harmonic Transforms of S:

$$\tilde{a}_{\ell m} = \int d\boldsymbol{n} \ Y_{\ell m}^*(\boldsymbol{n}) \ S(\boldsymbol{n}), \qquad \tilde{a}_{\ell m_1 m_2} = \int d\boldsymbol{n} \ Y_{\ell m_1}^*(\boldsymbol{n}) Y_{\ell m_2}^*(\boldsymbol{n}) \ S(\boldsymbol{n})$$

• Raised Azimuthal Indices generated by $Y_{\ell}^{m} = (-1)^{m} Y_{\ell,-m}^{*}$:

$$\tilde{a}_{\ell m_1}^{m_2} = \int d\boldsymbol{n} Y_{\ell m_1}^*(\boldsymbol{n}) Y_{\ell}^{m_2}(\boldsymbol{n}) S(\boldsymbol{n}) = (-1)^{m_2} \tilde{a}_{\ell,m_1,-m_2}$$

Create rank 0 (rotation invariant) tensors by contracting azimuthal indices:

$$\tilde{C}_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} \tilde{a}_{\ell}^{\ m} \tilde{a}_{\ell m}$$

 Sheldon Campbell, Model Indep. Meas. of Angular Power Spectra GRAPPA Seminar

Higher Order Spectra: Tensor Picture

All possible rank 0 tensors from rank 1 and 2 transforms.

$$\tilde{C}_{\ell}^{(2)} = \frac{1}{(2\ell+1)^2} \sum_{m_1,m_2} \tilde{a}_{\ell}^{m_1m_2} \tilde{a}_{\ell m_1m_2}$$

$$\tilde{C}_{\ell}^{(3)} = \frac{1}{(2\ell+1)^2} \sum_{m_1,m_2} \tilde{a}_{\ell}^{m_1m_2} \tilde{a}_{\ell m_1} \tilde{a}_{\ell m_2}$$

$$\tilde{C}_{\ell}^{(4)} = \tilde{C}_{\ell}^2 = \frac{1}{(2\ell+1)^2} \sum_{m_1,m_2} \tilde{a}_{\ell}^{m_1} \tilde{a}_{\ell m_1} \tilde{a}_{\ell}^{m_2} \tilde{a}_{\ell m_2}$$

 Sheldon Campbell, Model Indep. Meas. of Angular Power Spectra GRAPPA Seminar

Higher Order Spectra: Field Theory Pic.

Use the Spherical Harmonic Addition Theorem:

$$\frac{1}{2\ell+1} \sum_{m} Y_{\ell}^{m}(\boldsymbol{n}_{1}) Y_{\ell m}^{*}(\boldsymbol{n}_{2}) = \frac{1}{4\pi} P_{\ell}(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2})$$

Angular Power Spectrum is like 2 field configurations connected by a "correlator".

$$\tilde{C}_{\ell} = 4\pi \int \frac{dn_1}{4\pi} \frac{dn_2}{4\pi} \, S(\boldsymbol{n}_1) P_{\ell}(\boldsymbol{n}_1 \cdot \boldsymbol{n}_2) \, S(\boldsymbol{n}_2) \quad \overset{\boldsymbol{n}_1 \quad \frac{n_1}{\ell}}{\bullet} \, \boldsymbol{n}_2$$

Higher Order Spectra: Field Theory Pic.

• All possible diagrams with 2 correlators.

$$\tilde{C}_{\ell}^{(2)} = \int \frac{dn_1}{4\pi} \frac{dn_2}{4\pi} \, S(n_1) P_{\ell}^2(n_1 \cdot n_2) \, S(n_2)$$

"Composite Angular Power Spectrum"

$$\tilde{C}_{\ell}^{(3)} = 4\pi \int \frac{dn_1}{4\pi} \frac{dn_2}{4\pi} \frac{dn_3}{4\pi} S(n_1) P_{\ell}(n_1 \cdot n_2) S(n_2) P_{\ell}(n_2 \cdot n_3) S(n_3)$$

$$\tilde{C}_{\ell}^{(4)} = \tilde{C}_{\ell}^2$$
"Open Angular Bispectrum"
"Disjoint Angular Trispectrum"

Statistical Variance of $\hat{\tilde{C}}_\ell$

$$\sigma_{\hat{\mathcal{L}}_{\ell,N}}^{2} = \frac{(4\pi)^{2}}{N(N-1)} \left[\frac{2}{2\ell+1} + 2\tilde{\mathcal{L}}_{\ell}^{(2)} + 4(N-2) \frac{1}{4\pi} \left(\frac{\tilde{\mathcal{L}}_{\ell}}{2\ell+1} + \tilde{\mathcal{L}}_{\ell}^{(3)} \right) - (4N-6) \left(\frac{\tilde{\mathcal{L}}_{\ell}}{4\pi} \right)^{2} \right]$$

$$\approx \left(\frac{4\pi}{N}\right)^2 \left[\frac{2}{2\ell+1} + 2\tilde{\mathcal{C}}_{\ell}^{(2)} + \frac{4N}{2\ell+1}\frac{\tilde{\mathcal{C}}_{\ell}}{4\pi} + 4N\frac{\tilde{\mathcal{C}}_{\ell}^{(3)}}{4\pi} - 4N\left(\frac{\tilde{\mathcal{C}}_{\ell}}{4\pi}\right)^2\right],$$

$$N \gg 1$$

 Sheldon Campbell, Model Indep. Meas. of Angular Power Spectra GRAPPA Seminar

Compare to Gaussian Cosmic Variance

Old method with shot noise + Gaussian cosmic variance:

$$\sigma_{\hat{\tilde{C}}_{\ell,N}}^{2} = \frac{2}{2\ell+1} \left(\frac{4\pi}{N} + \tilde{C}_{\ell}\right)^{2} \\ \simeq \left(\frac{4\pi}{N}\right)^{2} \left[\frac{2}{2\ell+1} + \frac{4N}{2\ell+1}\frac{\tilde{C}_{\ell}}{4\pi} + \frac{2N^{2}}{2\ell+1}\left(\frac{\tilde{C}_{\ell}}{4\pi}\right)^{2}\right]$$

New variance formula:

$$\sigma_{\hat{C}_{\ell,N}}^{2} \simeq \left(\frac{4\pi}{N}\right)^{2} \left[\frac{2}{2\ell+1} + 2\tilde{C}_{\ell}^{(2)} + \frac{4N}{2\ell+1}\frac{\tilde{C}_{\ell}}{4\pi} + 4N\frac{\tilde{C}_{\ell}^{(3)}}{4\pi} - 4N\left(\frac{\tilde{C}_{\ell}}{4\pi}\right)^{2}\right]$$

- The new formula agrees surprisingly well with the traditional estimate, with dominant contributions for a weak signal in precise agreement.
- New terms important at large N. Note no N-independent terms!

Gaussian-Distributed Sky Map

- Our results do not assume Gaussianity.
- If the sky map is Gaussian, then higher order spectra are determined from \tilde{C}_{ℓ} as follows:

$$\left\langle \tilde{C}_{\ell}^{(2)} \right\rangle = \sum_{\ell'=0}^{2\ell} \frac{2\ell'+1}{4\pi} \begin{pmatrix} \ell & \ell & \ell' \\ 0 & 0 & 0 \end{pmatrix}^2 \left\langle \tilde{C}_{\ell'} \right\rangle$$
$$\left\langle \tilde{C}_{\ell}^{(3)} \right\rangle = 0$$
$$\left\langle \tilde{C}_{\ell}^{(4)} \right\rangle = \frac{2\ell+3}{2\ell+1} \left\langle \tilde{C}_{\ell} \right\rangle^2$$

Estimating the Statistical Variance of
$$\hat{\tilde{\mathcal{C}}}_{\ell}$$

$$\sigma_{\tilde{\mathcal{L}}_{\ell,N}}^{2} = \frac{(4\pi)^{2}}{N(N-1)} \left[\frac{2}{2\ell+1} + 2\tilde{\mathcal{L}}_{\ell}^{(2)} + 4(N-2) \frac{1}{4\pi} \left(\frac{\tilde{\mathcal{L}}_{\ell}}{2\ell+1} + \tilde{\mathcal{L}}_{\ell}^{(3)} \right) - (4N-6) \left(\frac{\tilde{\mathcal{L}}_{\ell}}{4\pi} \right)^{2} \right]$$
Unbiased estimators for all these spectra were determined for N events.

$$\widehat{\sigma_{\hat{\ell}_{\ell,N}}^2} = \frac{(4\pi)^2}{N(N-1)} \left[\frac{2}{2\ell+1} + 2\hat{\tilde{C}}_{\ell,N}^{(2)} + 4(N-2) \frac{1}{4\pi} \left(\frac{\hat{\tilde{C}}_{\ell,N}}{2\ell+1} + \hat{\tilde{C}}_{\ell,N}^{(3)} \right) - (4N-6) \frac{\hat{\tilde{C}}_{\ell,N}^2}{(4\pi)^2} \right]$$

Consequences of Findings

- Experiments using Monte Carlo to estimate error already take into account these new effects automatically.
- Experiments using Gaussian Cosmic Variance may be missing higher orders in the uncertainty of angular power.
 - Fermi-LAT anisotropy measurement should check estimators of these terms for possible corrections to their uncertainties.
 - Small χ^2 suggests either their errors should be smaller (possibly due to some more subtle effects) or energy bins are somehow correlated.

This error analysis must also take into account effects of:

- non-uniform exposure,
- sky masking,
- other observational bias or instrumental effects.

Conclusions

- A new analytic error analysis of angular power spectra of radiation events (γ-rays, etc.) or survey targets (galaxies, AGN, etc.) is presented.
- The unbiased estimator of the source's angular power spectrum is in agreement with usual estimates.
- The uncertainty has the usual shot noise and first order signal contributions, but gives new higher order anisotropy contributions important for large N.
- These results do not assume Gaussianity of signal/sources.
 - Results apply to any event distribution.