

Spectrum and Morphology of the Fermi Bubbles

Anna Franckowiak, SLAC/KIPAC in collaboration with Dmitry Malyshev and Vahe Petrosian

for the Fermi-LAT Collaboration

- 50 months of data
- Pass 7 reprocessed data set
- Ultraclean class
- Galactic plane masked: |b| > 10°
- Data are binned
 - 25 logarithmic energy bins from 100 MeV to 500 GeV
 - Spatial binning with HEALPix (0.9° resolution)

Submitted to ApJ

Galactic Diffuse Modeling

Two methods

Gamma-ray pace Telescope

- Based on GALPROP (see talk by Luigi Tibaldo)
 - Assumptions about CR source distribution etc.
- Data driven
 - Does not depend on GALPROP
 - Uses features of gamma-ray data to define templates for Galactic diffuse components
- Combination of both methods gives a handle on systematic uncertainties

All-sky fit including all diffuse model templates BUT bubble template, signal region masked

Dermi Gamma-ray Space Telescope

Define bubble template from ٠ residuals (integrated from 6.4 to 300 GeV)

Gamma-ray Space Telescope

Gamma-ray luminosity: $(4.4 \pm 0.1[\text{stat}]^{+2.4}_{-0.9}[\text{syst}]) \times 10^{37} \text{ erg s}^{-1}$

 Previous claims, Yang et al, arXiv:1402.0403, hardening towards top of South bubble

 Explanation: high-energy particles diffuse faster and reach high latitudes above the assumed injection source in the plane first

 No spectral variation in latitude stripes within systematic uncertainties

Shape at Different Energies

Gamma-ray Space Telescope

No change in bubble shape with energy found

 Su and Finkbeiner (ApJ 753, 2012): evidence for cocoon and pair of jets with hard spectra

- Excess emission in South East of the bubbles
- Identical spectral shape within systematic errors

 No significant residuals found aligned along a specific direction that could be interpreted as a jet

-10

-5

-15

0.0

-0.5

 $\overline{20}$

10

 $\mathbf{5}$

 $\varphi^{0}(\text{deg})$

15

Boundary of the Bubbles

Space Telescope

No variation with energy found, but some variation with position

Observations in Other Wavelength

Ade et al., 2012, A&A, 554, A139

• X-ray: ROSAT

Snowden et al. 1997, ApJ, 485, 125

Polarization

Gamma-ray Space Telescope

• X-ray: Suzaku

- Electrons accelerated to E⁻² spectrum by diffusive shock acceleration
- Gamma rays by inverse Compton scattering on radiation fields
- Microwave haze by synchrotron of same population of electrons

Illustrations by P. Mertsch

- Gamma rays by π^0 on thermal gas (density ~ 0.01 cm⁻³)
- Secondary e⁻ produce synchrotron

Leptonic, Hadronic, Gin Tonic?

Sermi

A. Franckowiak

 Assuming that the microwave haze and the gamma-ray bubbles are produced by the same population of electrons: hadronic model fails to describe the spectral shape

45

- Leptonic models can explain microwave haze for B~8µG
- Drop in magnetic field at latitudes of |b| ~35° could explain different latitudinal extension

0

-90

-45

Shocks and Bubbles are common in other Galaxies

Gamma-ray Space Telescope

Unlikely that similar structures in gamma rays can be detected in other galaxies due to limited spatial resolution

Unique opportunity to study gamma-ray lobes in our neighborhood

- Fermi Bubbles detected in gamma-ray data
- Hard spectrum with cutoff at ~110GeV
- Possible association with microwave haze and ROSAT data
- Leptonic and hadronic interpretation of gamma-ray data possible, assuming association with microwave haze prefers leptonic models
- Energy injection from GC:
 - Enhanced star formation or jet activity
- Simulation can describe observed features of the bubbles
- More data (radio polarization, X-ray) will help to obtain deeper understanding

Thank you

A. Franckowiak

BACKUP

- Hooper and Slatyer, arXiv:1302.6589, additional component at low energies
- Interpretation: dark matter, ٠ 10-5 Uniform millisecond pulsars? 0-10 degrees 10-20 degrees 20-30 degree 30-40 dearee 40-50 dearee 60 Diffuse mode ial PROP π' E² dN/dE [GeV/cm²/s/sr] 10⁻⁶ GALPROP brem 40 20 0 10⁻⁷ -20-4010-8 -6010 100 40 20 -20-400 Photon Energy [GeV] Galactic Longitude (deg.)

A. Franckowiak

• data from 2008 to 2011

S. Adrian-Martinez et al. arXiv:1308.5260

- Test various energy cutoffs of the assumed proton spectrum
- no statistically significant excess of events is observed \rightarrow upper limits on the neutrino flux

Gamma-ray Space Telescope

Lunardini, Razzaque Phys.Rev.Lett. 108 (2012) 221102

GALPROP Template Fitting

Templates (free/fixed):

Gamma-ray Space Telescope

- Inverse Compton (IC)
- Local hydrogen (HI and HII)
- Non-local hydrogen (HI and HII)
- Molecular hydrogen (H2)

- Loop I (geometric template or Haslam map)
- Bubbles (from residuals)
- Isotropic
- Point sources: 2FGL, bright sources refitted
- Fit in individual energy bins

Wolleben, M. et al. 2007, based on polarization surveys at 1.4GHz

• Template definition, "Peeling the onion":

Gamma-ray pace Telescope

- Define gas-correlated component by fitting gas maps in local patches, other smooth components are modeled with local polynomials
- Subtract gas-correlated component
- Define IC and isotropic contribution:
 - Gaussian along Gal. plane (to model IC)
 - Gaussian perpendicular to plane (as a proxy for bubbles and Loop I)
 - Isotropic template
- Subtract IC Gaussian, define bubble template from residuals
- Fit all templates to data in individual energy bins

- AGN jets from Galactic center (e.g. Guo & Mathews, Yang 2012/13)
 CRs accelerated and transported by jets
- Spherical outflow from hot accretion disk (Guobin 2014)
 - Central molecular zone collimates the outflow
- Problems
 - limb darkening \rightarrow shear viscosity to concentrated CR near edges
 - Edges are not sharp → tangential fields at edges → suppressing CR diffusion across edges causing sharp edges)

Bubble Template

 All sky fit including all templates BUT bubble template, signal region masked

Gamma-ray Space Telescope

 Define bubble template from residuals (integrated from 6.4 to 300 GeV)

- Fit all sky (|b|>10°), each energy bin separately
- Templates used in fit: GALPROP templates (gas & IC), Loop I, bubble, point sources, isotropic

All Sky Fit

Spectrum – two methods

Gamma-ray Space Telescope

North and South Bubble have similar spectrum

Gamma rays in the bubbles are mainly produced by ~ 1TeV electrons: ~ 0.5 Myr cooling time

Gamma-ray Space Telescope

 t_{cool} < $t_{formation} \rightarrow Expansion$ speed of the bubbles of ~20,000km/s

Reacceleration? E.g. plasma wave turbulences (Mertsch & Sakar, 2011)

- Does not depend on GALPROP
- Does not assume azimuthal symmetry (e.g. violated for spiral arms)
- Gas maps used to trace gamma-ray emission in small patches
 - H I and CO survey, SFD dust map
 - Scaling factor is proportional to line of sight cosmic-ray density

- Does not depend on GALPROP
- Does not assume azimuthal symmetry (e.g. violated for spiral arms)
- Gas maps used to trace gamma-ray emission in small patches
 - HI and CO survey, SFD dust map
 - Other components (IC, bubbles, Loop I) are assumed to be smooth or not correlated with the gas and are modeled by spatial polynomial

- After subtraction of the gas component, the IC is modeled with a bivariate Gaussian along the Galactic plane
- Other components (Loop I and bubbles) are estimated with Gaussian perpendicular to the plane

 Definition of Fermi bubbles template from the residuals using significance threshold (similar to previous method)

Significance of integrated residual, E = 10.0 - 500.0 GeV

- WMAP data: no evidence for polarization, possibly hidden by noise (small turbulent component in the magnetic field can reduce the polarization amplitude when projecting along the line of sight)
- S-PASS data: discovered a high degree of polarized lobe emission at 2.3 GHz: ordered magnetic field lines inside bubbles

Gamma-ray Space Telescope

- Added in Instrument related: quadrature
 - Systematic error in the effective area (2012 ApJS, 203)
 - Galactic modeling:
 - The choice of the input GALPROP configuration might influence the extracted bubble features
 - Cosmic-ray source distribution:
 - Pulsars, SNR
 - Size of cosmic-ray confinement volume (halo size)
 - Cylindrical geometry with R = 20, 30 kpc and z = 4,10 kpc
 - Spin temperature (optical depth correction of the H I component obtained from 21cm survey)
 - T = 150K, optically thin
 - Loopl template
 - Bubble template
 - Alternative analysis method based on fits in local patches

Gamma-ray Space Telescope

Energy in electrons $(1.0 \pm 0.2[\text{stat}]^{+6.0}_{-1.0}[\text{syst}]) \times 10^{52} \text{ erg}$

Synchrotron emission

Sermi

Gamma-ray Space Telescope

Hadronic gamma-ray spectrum

ermi

Gamma-ray Space Telescope

 erg

Energy density

Gamma-ray Space Telescope

Gamma-ray Space Telescope

Origin of the Shock

- Gamma-ray Space Telescope
 - Guo & Mathews, arXiv:1103.0055
 - Jet from Galactic center
 - overpressured but underdense
 - 10 % Eddington luminosity
 - active for 1-2 Myr
 - terminated a Myr ago
 - Results are limb darkening
 - Solution: shear viscosity to concentrated CR near edges
 - Edges are not sharp
 - Solution: magnetic draping (field lines are draped around jet/ bubble, tangential fields at edges
 → suppressing CR diffusion across edges causing shard edges)

- Does not depend on GALPROP
- Does not assume azimuthal symmetry (e.g. violated for spiral arms)
- Gas maps used to trace gamma-ray emission in small patches
 - H I and CO survey, SFD dust map
 - Scaling factor is proportional to line of sight cosmic-ray density

- Constant volume emissivity → bump-profile in projection
- Evidence for shock only at bubble edges (from ROSAT data)
 - turbulence produced at shock and convected downstream → non trivial spatial variation of electron index
- 2nd order Fermi acceleration by large-scale turbulence → almost constant surface brightness in gamma-rays and sharp edges

(Mertsch & Sarkar, PRL 107 (2011) 091101)

Space Telescope

- Electrons accelerated to E⁻² spectrum by diffusive shock acceleration
- Gamma rays by inverse Compton scattering on radiation fields
- Microwave haze by synchrotron of same population of electrons

- Pervious claims, Yang et al., arXiv:1402.0403, hardening towards top of South bubble
- Explanation: high energy faster diffuse faster and reach high latitudes above the assumed injection source in the plane first

Difference to this work: Yang et al. allow less freedom in diffuse models

First detection **in WMAP** data: Finkbeiner, 2004, Astrophys. J., 614, 186 **Planck**: Ade et al., 2012, A&A, 554, A139

Gamma-ray Space Telescope

- Snowden, S. L., et al. 1997, ApJ, 485, 125
- Low-latitude bubble edges might line up with features in the ROSAT X-ray maps at 1.5 keV

Suzaku

- North/South edges bubble in X-ray with 280 ks Suzaku exposure
- No excess in non-thermal X-ray emission found associated with the Fermi bubble

Indications for weak shock driven by the bubbles' expansion at ~300km/s, compressing the surrounding halo gas to form Loop I

Expected non-thermal emission is still about factor of 5-10 lower than present UL.

Kataoka et al., 2013ApJ...779

MODELS AND INTERPRETATION