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• it has impact on the reconstruction of WIMP mass and scattering 
cross sections via direct detection data	

!

• it represents a potential solution to conflicting data	

!

• it provides information on the characteristics and history of the 
Milky Way	

!

• it is relevant also for indirect detection (e.g. ⟨σannv⟩)
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conclusions presented here are robust to changes in the
benchmark mass. [26]
We use a fiducial cross-section of σp = 2× 10−45 cm2,

which is at the current bound from XENON100 [4]. How-
ever, this bound was calculated assuming a Standard
Halo Model and, in any case, the value of σp is de-
generate with the local DM density ρ0, which is typi-
cally presented with substantial uncertainties (e.g. Ref.
[27–30]). We therefore choose to fix the cross-section at
the above fiducial value and fix the local DM density
at ρ0 = 0.3 GeV cm−3. We consider only a single bench-
mark cross-section, as varying this parameter only affects
the total number of events observed and should therefore
only affect the precision of reconstructions rather than
their accuracy.
For each set of benchmark parameters we generate

a single realisation of data. The impact of Poissonian
statistics on reconstructions has previously been studied
in detail in Ref. [31]. Using these benchmark values, the
total number of events observed across all three experi-
ments ranges from 176 in the SHM+DD case to 386 for
the stream.
We assume no prior knowledge of the speed distribu-

tion and attempt to construct a parametrization which
will allow us to fit the mock data sets in a model indepen-
dent way. The one (rather weak) assumption we make
about the speed distribution is that f(v > vmax) = 0
for vmax = 1000 km s−1. The choice of the value vmax is
somewhat arbitrary, but this particular value is conserva-
tive as the Galactic escape speed is significantly smaller
than this [8].
We note that, by definition, the speed distribution

is everywhere positive f(v) ≥ 0, motivating us to
parametrize the logarithm of f(v) as a polynomial of de-
gree N in v. We therefore write

f(v) ∝ exp

{

−
N
∑

k=0

akP̃k

(

v

vmax

)

}

, (4)

meaning that the full directionally-averaged speed distri-
bution is

f1(v) = v2 exp

{

−
N
∑

k=0

akP̃k

(

v

vmax

)

}

, (5)

subject to the normalisation condition
∫ vmax

0

f1(v) dv = 1 . (6)

We have chosen a basis of shifted Legendre polynomials
P̃k of degree k = {0, 1, ..., N} for the parametrization. In
theory, any basis may be used, but in practice choosing
polynomials which are orthogonal over some finite range
of v improves the behaviour of the coefficients ak. By
varying N , the number of terms in the polynomial, we
can accommodate features in the distribution function,
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FIG. 2. 68% and 95% confidence contours for the WIMP
mass mχ and cross-section σp obtained using the speed
parametrization described in the text. Results are shown
for three different underlying speed distributions: SHM (solid
blue), SHM+DD (dot-dashed green) and stream (dashed red).
The true parameter values are shown as a black cross.

such as multiple components. By widening the priors on
the values ak, we can accommodate sharper individual
structures.

We explore the posterior distribution for the param-
eter space {mχ,σp, {ak}} using the publicly available
MultiNest package [32, 33] as a generic nested sam-
pler. We use an unbinned likelihood function (as intro-
duced in Ref. [34]) and use the following sampling pa-
rameters: Nlive = 10,000, eff = 0.3, tol = 1.0e-4.
We use log-flat priors on mχ ∈ [1, 1000] GeV and σp ∈
[1, 1000] × 10−46 cm2, linearly-flat priors on |ai| < 50
and go up to degree N = 4 in the basis polynomials. For
the stream benchmark, we allow |ai| < 500 and for the
SHM+DD distribution, we extend the basis up to N = 9.
We can straightforwardly check the robustness of a given
reconstruction by increasing N and widening the priors
on ak.

In Fig. 2, we show the 68% and 95% confidence con-
tours for the reconstruction of the mass and cross-section,
obtained from the 2-dimensional profile likelihood. In
the case of the SHM and stream, the WIMP mass and
cross-section are both well recovered, lying within the
68% contour. In the case of the SHM+DD distribution
function, however, there is a significant bias towards a
smaller cross-section, with a discrepancy of around 30%
between the underlying and reconstructed cross-section.

Table II shows the best fit WIMP masses and error es-
timates derived from these profile likelihoods. In contrast
to the bias observed in the reconstruction of the cross-
section, the WIMP mass is accurately reconstructed in

3

be used (see e.g. [31, 32]). In addition, high resolu-
tion N-body simulations suggest that there can be sig-
nificant deviations from the maxwellian velocity distri-
bution [33–35], including features in f(v) especially at
high velocity. Some simulations also show evidence for a
dark disk, corotating with the baryonic disk of the Milky
Way, caused by the tidal distruption of satellites which
are preferentially dragged into the disk plane [36, 37].
It is therefore necessary to consider the presence of addi-
tional velocity structure beyond the SHM and the impact
this may have on parameter reconstruction.

III. PARAMETER ESTIMATION METHOD

We now present the benchmark experimental and the-
oretical parameters which will be used to test various re-
construction methods as alternatives to the simple SHM
assumption. The Markov Chain Monte Carlo methods
used to explore the posterior distribution of the parame-
ters are also introduced.

A. Benchmark Parameters and Experiments

As noted in Ref. [25], it is impossible to estimate the
WIMP mass from a single experiment if no assump-
tions are made about f(v), so we consider three next-
generation detectors, modelled on experiments which are
currently in development. Each experiment is charac-
terised by a single (suitably averaged) target nucleus
mass, mN , a total detector mass, mdet, an effective ex-
posure time, texp, and a pair of energies, Emin and Emax,
which mark the extent of the signal region. We focus on
a particular set of experimental parameters in order to
provide a concrete example of how the WIMP parameters
can be estimated accurately. Table I shows the experi-
mental parameters used in this work, which are chosen
to approximately match those used by Peter [28].
We assume perfect and uniform detection efficiency -

that is, all signal events and no background events sur-
vive analysis cuts. We also assume perfect energy res-
olution. For a real experiment, these assumptions will
almost certainly not hold, for example due to variations
in the relative scintillation efficiency of Xenon [41], but
the results presented here should be viewed as a proof of
principle in the ideal case.
Figure 1 shows the minimum and maximum accessi-

ble WIMP speeds for each experiment. All three experi-
ments rapidly become insensitive to WIMPs with speeds
less than ∼ 1000 km s−1 as the WIMP mass drops be-
low mχ ∼ 10 GeV. According to the RAVE survey
[42], the local galactic escape speed lies in the interval
vesc ∈ [498, 608] km s−1. The fastest WIMPs impinging
on an experiment will then have speed v = vlag + vesc.
This is consistent with results from N-body simulations
which indicate local escape velocities (in the Earth frame)
of around 800 km s−1 [33]. This suggests that the exper-
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FIG. 1. Range of accessible WIMP speeds for each of
the three mock experiments: XENON1T-like (solid blue),
SuperCDMS-like (dashed green) and WArP-like (dot-dashed
red). Each pair of lines corresponds to the maximum and min-
imum accessible WIMP speeds for a given experiment. The
outermost dotted red lines show the accessible speeds for the
adjusted parametrisation range described in Sec. VI.

iments considered here generically have a low sensitivity
to such light WIMPs, producing too few events for accu-
rate parameter reconstruction.
We therefore use benchmark masses of 50 GeV and

100 GeV. For WIMP masses heavier than this, vmin be-
comes roughly independent of mχ, leading to large de-
generacy in the mχ − σp plane [25, 43, 44]. This will
mean that for very heavy WIMPs, it will only be pos-
sible to place lower bounds on the WIMP mass. In
fact, at the statistical precision presented here this is
also true for most mock datasets generated with mχ =
100 GeV. As a benchmark cross-section, we use the value
σp = 10−44 cm2, which is still a factor of several be-
low current exclusion limits. We assume that the local
dark matter density is known exactly and use the value
ρ0 = 0.3 GeV cm−3. As will be explained in Sec. VI, the
precise values of σp and ρ0 are not particularly impor-
tant due to the degeneracy between these two parame-
ters. The total number of events from all three detectors
combined typically ranges from around 300 to 600 for the
benchmark parameters considered here.
In order to ensure the robustness of the method, we use

three benchmark models for the velocity distribution:

(i) the Standard Halo Model (SHM), with σ =
156 km s−1 and vlag = 230 km s−1;

(ii) a 50% Standard Halo Model with a 50% contribu-
tion from a dark disk (DD);

Kavanagh & Green (2013)

Kavanagh & Green (2012)
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FIG. 3: The flux annular profile of di↵erent cases. Left panel: the angular profile of 0 � 90� region of the sky maps; right
panel: the profile of the zoomed in region of the left panel in the inner 0 � 5�. For legends of lines: solid, pure annihilation;
thin dash dotted, annihilation with Sommerfeld enhancement 1/v correction; thick dash dotted, annihilation with Sommerfeld
enhancement 1/v2 correction; dotted, annihilation with v2 correction; thick dashed, annihilation with adiabatic contraction;
thin dashed, pure decay. The flux are normalized such that the host halo has flux unity. See text for details.

point of view, this amounts to a renormalisation that we
ignore: it is the profile shape and clumpiness that we
care about. The cross-section for DM particle pair an-
nihilation changes significantly over the simulation range
caused by velocity changes in di↵erent environments, i.e.
by a factor ⇠ 102 or more [26]. In such a case, the sub-
halos, whose velocity dispersion is less than that of the
central halo, light up. For the 1/v2 case, the substruc-
tures almost dominate, as shown in Fig-1(c).

To calculate an accurate Sommerfeld enhancement
value at a given location, one needs the whole phase-
space distribution of each particle. This is not possible
for our case using the VLII simulation. We therefore fol-
low Kuhlen et al. [26] and assume a Boltzmann velocity
distribution of the relative velocity vrel:

f(vrel,
p

2/3�
v

) = 4⇡/(2
p

2/3⇡�
v

)3/2v2rel exp[�3v2rel/�
2
v

].
(4)

The Sommerfeld enhancement is then given by S(�
v

) =R
f(v,

p
2/3�

v

)S(v)dv. If S(v) has no saturation, then
S(�

v

) is then ⇠ 1/�
v

for the 1/v case and 1/�2
v

for the
1/v2 case. If one takes into consideration the saturation
velocity v

s

, below which S(v) no longer increases, we
find S(�

v

) presents similar properties. We therefore ap-
proximate S(�

v

) completely by S(v) without losing much
accuracy. In our calculation, we calculated S as 1/�

v

or
1/�2

v

when �
v

> v
s

, and as S(v
s

) when �
v

< v
s

. Here
�
v

is the velocity dispersion mentioned in the last sec-
tion. Fig-1 (b) and (c) shows the Sommerfeld enhance-
ment case for the �-ray map. To avoid the cross-section

blowing up at very low velocity, we applied saturation
velocities equal to 1 km/s for the 1/v case and 5 km/s
for the 1/v2 case.

B. p-wave annhiliation

As indicated in the Sommerfeld enhancement case, the
relative velocity of particles varies significantly after ther-
mal freeze out. If the cross-section is velocity-dependent,
it will either suppress high velocity or low velocity annihi-
lation. Constraints on annihilation processes from CMB
and �-ray observations could be considerably weakened
if the s�wave channel were suppressed. p�wave annihi-
lations are orders of magnitudes larger than s�wave an-
nihilations at recombination and are an interesting case
to be considered. For example, neutralino annihilation
could be dominated by the p�wave process [27]. In con-
trast to the Sommerfeld case, we consider an annihilation
case whose s�wave process is suppressed. For the anni-
hilation rate, we phenomenologically set h�vi / v2(n�1),
where n = 1(2) for s�wave(p�wave) annihilation [28].
Fig-1 (d) shows a map from the p�wave annihilation
with the s�wave channel suppressed. More discussion
will be given in §VI.

Figure 1: The normalised speed distributions. Top panel, the standard halo model: SHSP (solid
line), SHvescH (dotted), SHvcL (short dashed) and SHvcH (long dashed). Bottom left, modi-
fied Maxwellian fits to VL2 simulation: SHSP (solid line) SIMsh (long dashed), SIMspmed (short
dashed), SIMsp16 and SIMsp84 (dotted). Bottom right, dark disc models: SHSP (solid line),
DDρHσL (dotted), DDρLσL (short dashed), DDρLσH (long dashed). Note the different scale in
this and subsequent figures for the dark disc models.

DD density is decreased the height of the peak decreases. If the DD velocity dispersion

is increased the separation of the DD speed peak and halo speed peak decreases. For

DDρLσH, which has a low DD density and a large speed dispersion, the speed distribution

has a single peak, at a lower speed than the standard halo model. As previously found [34]

the speed distributions from the modified Maxwellian fits to the VL2 simulation data have

less low speed and more high speed particles than the standard halo model with the same

peak speed, v0. However the differences, in the lab frame, are fairly small [34]. The best

fit to the shell data and the median fit to the sphere data are fairly similar. The scatter

between sphere fits is O(10%). If the simulation fits were compared to a standard halo

with the same circular speed, vc (which is the observable quantity) rather than the same

peak speed, v0, the deviations from the standard halo model would, however, be larger.

4. Results

4.1 Differential event rate

In fig. 2 we plot T (vmin), the time averaged value of the model independent parameterisation

– 8 –

Yang et al. (2014)
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Fitting and/or reconstructing f(v)
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• f(v) can be extracted from N-body simulations of 
Milky-Way-like galaxies (with baryons)	

!

• future direct detection data will allow a 
measurement of f(v) (especially if combined with 
neutrino telescopes)
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VDF of Dark Matter from Simulations 3

Figure 2. The VDF for one representative dark matter halo
in Rhapsody (histogram), along with the best fits using Eq. (1)
with (v0/vesc, p) = (0.13, 0.78) (black, χ2 = 0.59), SHM (blue,
9.67), the double power-law model (cyan, 9.47), the Tsallis model
(green, 1.99), and the analytic VDFs from Eddington’s formula
with isotropic assumption (red dash, 8.48), Osipkov–Merritt (ma-
genta dash, 6.41), and constant β = 1/2 (yellow dash, 11.8). The
y-axis is in log scale in the main figure and linear in the inset.

as q → 1 (Vergados et al. 2008). It was argued that
the Tsallis model provides better fit to simulations with
baryons (Ling et al. 2010), although this conclusion may
be affected by the relatively low resolution of the simu-
lations.
In contrast, our empirical model, Eq. (1), is not based

on a Gaussian distribution but rather on an exponential
distribution. It also has a power-law cut-off in (binding)
energy. Fig. 2 shows the VDF in a simulated halo, along
with the best fit from Eq. (1) and the best fits from other
conventional models. All the best-fit parameters are ob-
tained from the maximum-likelihood estimation in the
range of (0, vesc). The fits using Eq. (1) are statistically
better than other models or the analytic VDFs, espe-
cially around the peak and the tail. We performed the
likelihood-ratio test and found that our model fits sig-
nificantly better for all Rhapsody halos than the SHM
or the double power-law model at all four radii shown in
Fig. 1.
In Fig. 2 we also compare three analytic VDFs. For

the isotropic model shown, the analytic VDF is given
by Eddington’s formula, which gives a one-to-one corre-
spondence between the density profile and the VDF. For
anisotropic systems, one must also model the anisotropy
parameter, defined as β = 1 − (σ2

θ + σ2
φ)/(2σ

2
r), where

σ2 is the variance in each velocity component. There
is currently no analytic VDF whose anisotropy profile
matches that measured in simulations, so we choose three
simple and representative anisotropic models: constant
anisotropy (with β = 0 and 1/2) and the Osipkov–
Merritt model (Osipkov 1979; Merritt 1985). The phase-
space distributions of these models can be determined
numerically (Binney & Tremaine 2008). For all three
cases, we adopt the NFW profile as in Eq. (2), with the
best-fit scale radius. For the Osipkov–Merritt model, we
use the best-fit anisotropy radius. It is shown in Fig. 2
and also suggested by the chi-square test for the models
considered that the analytic VDFs do not describe the
simulated VDF well.
Our VDF model, Eq. (1), consists of two terms: the

exponential term and the cut-off term. The origin of the

the exponential term can be explained by the anisotropy
in velocity space. Fig. 3 shows the distributions, the dis-
persion, and the kurtosis of the velocity vectors along
the three axes of the spherical coordinate. Kurtosis is a
measure of the peakedness of a distribution, defined as
(
∑

i v
4
i )/(

∑

i v
2
i )

2 − 3, where vi is the velocity of the i-th
particle along one axis, and this value is zero for the nor-
mal distribution. The ratios of dispersion between the
three axes are close to one at small radii, and the ratios
increase with radius. The kurtosis, on the other hand,
is in general non-zero and decreases with radius. An
important consequence of the non-zero kurtosis is that
even if the dispersion along the three axes are similar
(anisotropy parameter β ∼ 0), the velocity vectors do
not follow an isotropic multivariate normal distribution
in any coordinate system (even after a local coordinate
transformations). In other words, as long as there exists
either anisotropy or non-zero kurtosis in a certain coordi-
nate, the norms of the velocity vectors will not follow the
Maxwell–Boltzmann distribution. Indeed, Fig. 3 shows
that in the simulations, one always has non-zero kurto-
sis and/or anisotropy. Other simulations also indicate
that the velocity vectors of dark matter particles have
anisotropy (Abel et al. 2011; Sparre & Hansen 2012) and
non-zero kurtosis (Vogelsberger et al. 2009). We further
found that if the ratios of dispersion between the three
axes of a multivariate normal distribution are around 0.2
to 0.6, the norms of those random vectors will follow a
distribution which resembles our model without the cut-
off term, v2 exp(−v/v0). (For a formal discussion on this
topic, see e.g. Bjornson et al. 2009.) This suggests that if
one can find a coordinate system where the distributions
of the velocity components are all distributed normally
(with zero kurtosis), there will be a larger difference be-
tween the dispersion along the three axes in this new
coordinate system than in the spherical coordinate.
The (v2esc − v2)p term in our VDF model introduces a

cut-off at the escape velocity. It further suppresses the
VDF tail more than the exponential term alone does. De-
spite that this cut-off term has the form of a power-law
in (binding) energy, the best-fit values of the parameter
p does not necessarily reflect the “asymptotic” power-
law index k, defined as k = limE→0(d ln f/d ln E), where
f(E) is the (binding) energy distribution function. The
relation between k and the outer density slope has been
studied in the literature (Evans & An 2006; Lisanti et al.
2011). However, because d ln f/d ln E deviates from its
asymptotic value k rapidly as E deviates from zero,
the asymptotic power-law index k could be very differ-
ent from the best-fit power-law index for the VDF tail
(e.g. v > 0.9vesc). Furthermore, the shape of the VDF
power-law tail could be set by recently-accreted subha-
los that have not been fully phase-mixed (Kuhlen et al.
2012), and hence has no simple relation with the density
profile. In high-resolution simulated dark matter halos,
particles stripped off of a still-surviving subhalo are seen
to significantly impact the tail of the VDF. A larger sam-
ple of simulations at higher resolution than we consider
in the current analysis will be needed to further test this
hypothesis.

4. HALO-TO-HALO SCATTER IN VELOCITY
DISTRIBUTIONS

Mao et al. (2013)
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Fig. 3.— The speed distribution in Eris (black) and
ErisDark (grey) on a logarithmic scale, compared to the
fitting function from Mao et al. (2013b) (dashed), with
(v

0

, v
esc

, p) = (330 km s�1, 480 km s�1, 2.7) for Eris and
(100 km s�1, 440 km s�1, 1.5) for ErisDark, and to the peak-
matched Maxwellian curves (dotted).

ting function for the speed distribution4,

f(v) =

⇢
Av2 exp(�v/v0)

�
v2esc � v2

�
p

if v  vesc,
0 otherwise,

(1)
which they showed to be flexible enough to match the
variations in the shape of f(v) over a wide range of
halo masses and locations within the halos. As shown
in Figure 3, the f(v) of both ErisDark and Eris are in-
deed well fit by this functional form, with fit parameters
(v0, p) = (330 km s�1, 2.7) in Eris and (100 km s�1, 1.5)
in ErisDark. The escape velocity vesc is not a free pa-
rameter and was determined directly in the simulations
from the maximum particle speeds in the ROI to be
vesc = 480 km s�1 in Eris and 440 km s�1 in ErisDark.
The increase in the parameter p from ErisDark to Eris

is an important result of this study, since it is precisely
such high values, i.e. a more steeply falling f(v) at
high speeds, that ease the tension between the tentative
detection of a scattering signal reported by CDMS-Si
(CDMS Collaboration et al. 2013) and the nominal
exclusion of such a signal from the Xenon-100 experi-
ment (Aprile et al. 2012), as shown by Mao et al. (2013a).

3. A ROTATING DARK DISK FROM SATELLITE
ACCRETION

We now turn to a discussion of the origin of the asym-
metry in the distribution of the azimuthal velocity com-
ponent in Eris. This feature is indicative of a “dark disk”,
consisting of an oblate dark matter distribution aligned
and nearly co-rotating with the stellar disk, as previ-
ously reported in cosmological hydrodynamic galaxy for-
mation simulations by, for example, Read et al. (2009)

4 Note that we include the factor of 4⇡v2 in our definition of
f(v) (such that

R
f(v)dv = 1), and hence our expression has an

additional factor of v2 compared to Mao et al. (2013b).

(see also Ling et al. 2010), who find that the dark disk
may contribute between 20 and 60 percent of the local
DM density.
Dark disk material is typically thought to be deposited

by massive satellites that are preferentially dragged into
and disrupted in the plane of the disk (Read et al. 2008,
2009). If such satellites more commonly have pro-grade
orbits with respect to the rotation of the stars in the
disk, then the material they deposit upon being tidally
disrupted would predominantly be co-rotating with the
stars, leading to a positively skewed f(v

✓

). In fact, dark
disk material is expected to be prograde rather the retro-
grade, as dynamical friction is more e�cient at dragging
towards the disk plane incoming satellites which not only
are massive, but also on a prograde orbit wrt to the bary-
onic disk.
Indeed, the fraction of DM with v

✓

within 50 km s�1

of the peak of the star’s f(v
✓

) (at 205 km s�1) is higher
in Eris (0.13) than in ErisDark (0.055). However, a sim-
ilar increase is also observed at negative v

✓

(within 50
km s�1 of v

✓

= �205 km s�1) where the fraction of mass
increases from 0.054 (ErisDark) to 0.095 (Eris). This
indicates that the bulk of the increase in co-rotating ma-
terial stems from a broadening of the f(v

✓

) distribution,
rather than from disrupted satellites preferentially de-
positing material into a co-rotating configuration. Note
that some symmetric broadening could still arise from
satellites being dragged into the galactic plane, if they
were about equally likely to be on prograde and retro-
grade orbits. Most of the increase in dispersion, however,
is likely due to the additional baryonic material that has
been able to settle to the center of the halo and has deep-
ened the potential: at 8 kpc, the circular velocity has
increased from 140 km s�1 in ErisDark to 205 km s�1 in
Eris.
Motivated by these considerations, we have followed

in Eris the accretion and disruption of all satellites con-
sisting of more than 1000 DM particles at infall. There
are 160 such systems, of which 74 deposit material in
our disk ROI. We have identified all DM particles that
were at one point bound to these satellites, and deter-
mined their contribution to the DM distribution in the
disk ROI. In total there are 30,780 such particles, to-
gether contributing 38 percent of the local DM density.
Figure 4 shows distributions of the azimuthal and total
speed for each of these satellites. The left panel demon-
strates that not all of the material accreted from satel-
lites is co-rotating with the stars. In fact, most satellites
deposit material into a roughly symmetric v

✓

distribu-
tion centered on v

✓

= 0km s�1, while a few deposit a
predominantly retrograde (v

✓

< 0 km s�1) particle dis-
tribution. The positive skewness in the total f(v

✓

) ap-
pears to be contributed mostly by one massive system
with Minfall = 1.8⇥1010 M� and zinfall = 2.7 (mass ratio
1:14).
The total speed distributions in the right panel reveals

two populations of accreted satellites: one set deposits
material with typical speeds comparable to the peak of
the overall speed distribution (⇠ 200 km s�1), and a sec-
ond set with considerably higher speeds (& 300 km s�1).
The latter material makes up a so-called “debris flow”,
whose implication for direct detection experiments has
been discussed in Kuhlen et al. (2012).

16

FIG. 9. Same as Fig. 4 but using data both from direct detection and IceCube.

Kuhlen et al. (2013)

PRELIMINARY
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Density ρ(x) and velocity distribution f(v) are manifestations of a 
common phase-space density F(x,v)	

!
!
!
!
!
!
• with self-consistent F(x,v) one goes from a mass model (listing the 

contributions to Φ(x)) to a more informative dynamical model	

!
• F(x,v) = F(J,θ) = F(I1,I2,I3) (= F(E,L) for a spherical steady-state 

system)	

!
• dynamical models are common in the description of stellar objects 
Φ(x) ⟷ F(x,v) (even more in the near future with GAIA)
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• they represent a deeper understanding of the system	

!
• they can be used to get rid of unphysical solutions	

!
• they may represent our only source of information on f(v) if WIMPs 

are not detected in the next generation of direct detection 
experiments

Self-consistent solutions
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FIG. 9. Reconstructed speed distribution for a single realisa-
tion of data, generated for a 50 GeV WIMP. 68% and 95%
credible intervals are shown as dark and light shaded regions
respectively, while the underlying SHM distribution function
is shown as a solid blue line.

for particular features in the distribution. However, due
to the fact that the distribution function is normalized,
the values of f

1

at di↵erent speeds will be strongly cor-
related. We illustrate here how robust comparisons with
benchmark distributions can be made.

As a first step, we can attempt to sample from the
P (a), in order to obtain P (f

1

(v)). This is the probabil-
ity distribution for the value of f

1

at a particular speed
v, marginalizing over the values of f

1

at all other speeds.
We can repeat for a range of speeds to obtain 68% and
95% credible intervals for the whole of f

1

(v). The result
of this procedure is presented in Fig. 9, for a randomly
selected realisation from the SHM ensemble of Sec. VI.
The underlying SHM distribution is shown as a solid line,
while the 68% and 95% marginalized intervals are shown
as dark and light shaded regions respectively. In this
naive approach, we see that there is little shape informa-
tion which can be recovered from the reconstruction, with
only upper limits being placed on the speed distribution.

This method performs poorly because, as initially men-
tioned in Sec. III, we have no information about the frac-
tion of dark matter particles below the energy threshold
of our experiments. If this fraction is large, the event
rate for a given cross-section is suppressed. However,
increasing the cross-section will increase the total event
rate. There is thus a degeneracy between the shape of the
speed distribution and the cross-section, meaning that we
can only probe the shape of f

1

(v), rather than its overall
normalization. This degeneracy has not been accounted
for in Fig. 9. We can attempt to correct for this by ad-
justing the normalization of f

1

(v). If we fix f
1

(v) to be
normalized to unity above v

a

(where v
a

⇡ 171 km s�1 is
the lowest speed probed by the experiments for a WIMP
of mass 50 GeV), we can compare the shapes of the un-

FIG. 10. Reconstructed speed distribution for the same reali-
sation of data as Fig. 9. In this case, we have also normalized
f
1

(v) to unity above va ⇡ 171 km s�1 (vertical dashed line).
This is the lowest speed accessible to the experiments for a
WIMP of mass 50 GeV. 68% and 95% credible intervals are
shown as dark and light shaded regions respectively, while the
underlying SHM distribution function is shown as a solid blue
line.

derlying and reconstructed distribution functions. This is
illustrated in Fig. 10, which shows that we now broadly
reconstruct the correct shape of f

1

(v). Below v
a

, the
value of f

1

(v) is poorly constrained, because the exper-
iments provide no information about the shape of the
distribution below theshold.

There remain several issues with this approach. In
order to utilize this method, we must know the approx-
imate value of the lowest speed probed by the experi-
ments. However, this value is set by the WIMP mass.
We could determine v

a

using the reconstructed WIMP
mass, but this would be subject to significant uncertainty.
In addition, direct reconstructions of the speed distribu-
tion are easily biased. The upper limit of the energy
windows of the experiments corresponds to a particular
WIMP speed (for a given WIMP mass). WIMPs above
this speed still contribute to the total event rate, but con-
tribute no spectral information. The reconstructed shape
of the high speed tail of the distribution is therefore not
constrained by the data, but may a↵ect the reconstructed
value of f

1

at lower speeds.

An alternative approach is to reconstruct the mean
inverse speed ⌘(v) (defined in Eq. 2) at some speed v.
Because ⌘(v) is an integral function of f

1

, it is less prone
to bias as it takes into account the full shape of the dis-
tribution at speeds greater than v. However, we do not
know the normalization of f

1

and so we must normal-
ize ⌘ appropriately. For each point sampled from P (a),
we calculate ⌘. We then divide by ↵(v), the fraction of
WIMPs above speed v, calculated using the same param-

Kavanagh & Green (2013)
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Phase-space density only depends on E = Φ(r) - v2/2	

!
!
!
!
!
!
!
Constraints on the Milky Way Φ(r), i.e. mass model, translate into 
constraints on F(E) and f(v)
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Figure 7: Two dimensional marginal posterior pdf in the planes spanned by the local dark matter
density and one of the Galactic model parameters in the case of an Einasto profile. The normalization
is such that at the maximum the posterior pdf is equal to one. The black dots correspond to the means
of the plotted posterior pdf. One and two sigma contours are also shown.
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to the means of the plotted posterior pdf. One and two sigma contours are also shown.
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Figure 2. Left panel: marginal posterior pdf for the dark matter phase-space density gχ at u = 240
km/s. Central panel: mean dark matter phase-space density. Three profiles and Maxwell-Boltzmann
approximation with Θ0 = 220 km/s, vesc = 544 km/s, ρχ = 0.3 GeV/cm3 and σv =

√

3/2Θ0. Right
panel: ratio between the same Maxwell-Boltzmann distribution of the central panel and the tails of
our MCMC distributions.

Figure 3. Phase-space density “bands” corresponding to 68% and 95% credibility intervals. Left
panel: NFW profile. Central panel: Burkert profile. Right panel: Einasto profile.

mean value of gχ(uk) and the corresponding 68% and 95% credibility intervals. By proceeding
in this way for all the N points in the discretization we can plot a phase-space density “band”,
instead of the usual phase-space density curve. This has been done in Fig. 3 for the three
profiles under analysis. The red band is associated with the 68% credibility interval, while
the yellow one corresponds to the 95% credibility interval. This figure makes quantitative
what we already mentioned in the previous section: given a value of the velocity, say u, we
can now associate to u a pdf - and not just a number - which accounts for astrophysical
uncertainties in the determination of the phase-space density at that point.

In Fig. 2 (central panel) we show the ”mean” phase-space densities corresponding to the
three profiles considered in this paper. In this figure to each point of the velocity discretization
we associated the mean of the corresponding pdf. It should be now clear that, because of a
larger velocity dispersion, the Burkert case is characterized by a broader phase-space density.

We now compare our MCMC predictions with the usual Maxwell-Boltzmann approx-
imation. As already mentioned, a Maxwell-Boltzmann distribution is identified by two pa-
rameters: the escape velocity vesc and the velocity dispersion σv. Then, as explained in
section 2, the Maxwell-Boltzmann distribution is normalized imposing σv =

√

3/2Θ0, and

– 14 –

Catena & Ullio (2010) Catena & Ullio (2010)

Catena & Ullio (2012)
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Phase-space density also depends on L=r v sinη	

!
!
!
!
!
• phase-space density assumed to be separable F(E,L)=FE(E)FL(L)	

!
• constant velocity anisotropy: FL(L)∝Lk
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Wojtak et al. (2008)
Navarro et al. (2008)

The Diversity and Similarity of Simulated Cold Dark Matter Halos 11

Figure 9. Left panel: Velocity dispersion profiles for our Aq-A convergence series. Arrows, line-types and colours are as in Fig. 1. Note
the excellent numerical convergence. The shape of the velocity dispersion profile is remarkably similar to that of the r2ρ profile shown in
Fig. 1, highlighting the intimate connection between the density and velocity dispersion profiles which is responsible for the power-law
behaviour of the pseudo-phase-space density profile discussed in Sec. 4.4. Right panel: Anisotropy profiles for the Aq-A convergence
series. Note the non-monotonic variation with radius: the halo is nearly isotropic near the centre, is dominated by radial motions at
intermediate radii, but becomes markedly less anisotropic near the virial radius.

Figure 10. As Fig. 9, but for all six level-2 resolution Aquarius halos, scaled to match at the peak of the profile, identified by σmax

and r(σmax). This scaling highlights small but significant departures from similarity in the velocity dispersion structure of ΛCDM halos.
Note the correspondence in shape between the velocity dispersion and r2ρ profiles shown in Fig. 1, which reflects the “universal” pseudo-
phase-space density profile of the halos (Fig. 13). Note also that the non-monotonic behaviour of the anisotropy highlighted in Fig. 9 is
common to all six halos.

6 R. Wojtak et al.
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Figure 4. The profile of the anisotropy parameter. The solid line
and the dark gray area are the median and the interquartile range
of the profiles obtained for individual haloes and rescaled by rs

inferred from fitting the NFW profile.

4 THE ANALYTICAL MODEL OF THE

DISTRIBUTION FUNCTION

A general form of the DF for spherical systems in the state
of equilibrium is a function of energy and the absolute value
of angular momentum f(E, L). In our approach we assume
that the DF is separable in energy and angular momentum

f(E, L) = fE(E)fL(L). (18)

This is the first assumption that considerably narrows the
family of possible solutions. Therefore, it is necessary to
check how robust it is. We address this problem in the next
section, where we present an extensive comparison of the
analytical model with the simulations.

The angular momentum part of the DF in equation
(18) specifies the anisotropy of velocity dispersion tensor.
This quantity is commonly described with the so-called
anisotropy parameter

β(r) = 1 − σ2
θ(r)

σ2
r(r)

, (19)

where σr and σθ are the radial and the tangential velocity
dispersions respectively and we assume there are no stream-
ing motions. The values of this parameter range from −∞
for circular orbits to 1 for purely radial trajectories. Fig. 4
shows the average anisotropy profile of the simulated haloes
used for the measurement of the DF. The light gray rect-
angle in the background of the plot indicates the position
of the virial radius. It is clearly seen that the anisotropy is
typically a growing function of radius, with values ∼ 0.07
in the halo centre and ∼ 0.3 at the virial sphere (see e.g.
Mamon & !Lokas 2005 and Cuesta et al. 2007 for compari-
son). On the other hand, the considerable width of the in-
terquartile range of the measured β(r) (dark gray region)
signifies that the profiles of single haloes differ among each
other. Occasionally flat or decreasing profiles are measured.
It seems that a simple and general enough analytical model
of the anisotropy should possess at least three free parame-
ters which determine asymptotic values of β(r) for small and
large radii and a scale of transition between them. We pro-
ceed with the construction of such a model by introducing
a proper ansatz for fL(L).

Louis (1993) showed that the following asymptotes of
the angular momentum part of the DF

fL(L) ∝
ȷ

1 for L ≪ L0

L−2β∞ for L ≫ L0,
(20)

where L0 is an angular momentum constant, lead to con-
stant anisotropy β∞ at infinity (r2Ψ(r) ≫ L2

0) and β = 0
in the halo centre. This result can be easily generalized to
the case of a non-isotropic velocity distribution in both lim-
its of radius. First, let us note that the central part of the
halo is dominated by the particles with small angular mo-
menta, namely L2 ≤ 2r2Ψ(r) ≪ L2

0. Then, remembering
that the DF of constant anisotropy takes the form (Hénon
1973; Binney & Tremaine 1987; !Lokas 2002)

f(E, L) = fE(E)L−2β , (21)

it is easy to notice that the formula (20) can be rewritten in
the following way

fL(L) ∝
ȷ

L−2β0 for L ≪ L0

L−2β∞ for L ≫ L0,
(22)

where β0 is the central anisotropy of a system. As shown by
An & Evans (2006b), the upper limit for β0 is equal to γ/2,
where r−γ is the density profile near the halo centre. This
means that for the NFW density model we have β0 ≤ 1/2.

The simplest function obeying the asymptotic condi-
tions formulated above is a double power-law function

fL(L) =

„
1 +

L2

2L2
0

«−β∞+β0

L−2β0 . (23)

As shown in the following section, this ansatz leads to a
very realistic anisotropy profile that fits well the β(r) profiles
of simulated haloes. Furthermore, the simplicity of formula
(23) guarantees that the energy part of the DF can be quite
easily calculated via the inversion of the integral equation

ρ(r) =

ZZZ
fE(E)

„
1 +

L2

2L2
0

«−β∞+β0

L−2β0d3v. (24)

The key idea of this procedure lies in an analytical simpli-
fication of the right-hand side of (24) to a one-dimensional
integral. The resulting equation is then solved numerically
for fE(E). The technical details of this calculation are sum-
marized in Appendix B. Once the full form of the DF is
determined one can also calculate the velocity moments. All
formulae are reduced to one-dimensional integrals which can
be easily evaluated numerically (see Appendix C).

The top row of Fig. 5 shows the anisotropy, disper-
sion σr and kurtosis κr = ⟨v4

r ⟩/σ4
r of the radial velocity

inferred from the model of the DF. The calculations were
carried out assuming the NFW density profile and four sets
of model parameters chosen to illustrate the flexibility of the
model: β0 = 0.1 and β∞ = 0.3, 0.5 (solid and dashed lines
respectively); β0 = β∞ = 0.3 (dotted line); β0 = 0.4 and
β∞ = 0.1 (dashed-dotted line). In all cases the transition
value of L0 = 0.25 Ls was used.

The dispersion profiles for the two models with increas-
ing β(r), as expected, differ only for large radii which is the
effect of different values of β∞. Interestingly, the correspond-
ing kurtosis profiles clearly signify flat-topped velocity distri-
bution in the outer part of the halo (κr < 3), highly peaked
distribution in the centre (κr > 3) and roughly Gaussian for
radii around rs (κr ≈ 3). On the other hand, non-increasing

c⃝ 0000 RAS, MNRAS 000, 000–000

R0=8.5 kpc
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• apply to the same mass models as with 
the isotropic case	

!

• marginalize over (β0,β∞,L0)	
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Figure 2. Energies and angular momenta of particles within the
virial sphere of one of the simulated haloes. Solid and dashed
lines mark the profile of the maximum angular momentum and
the limit of vanishing radial velocity at rv respectively. To make
the picture less obscure we plotted only 1 percent of the particles.

where Ψ(∞) = 0. However, the mass profile of the equilib-
rium part of a halo reaches no further than the virial radius.
On the other hand, all analytical models of the DF involve
the density profile extending to infinity. We found that the
only coherent way to reconcile both facts is to split the in-
tegral (16) in two parts

Ψ(r) =

Z rv

r

GM(r)dr
r2

+

Z ∞

rv

GMNFW(r)dr
r2

. (17)

The first term is evaluated numerically by integration of a
discrete mass profile. The second term is an analytical exten-
sion with the NFW density profile which is an assumption of
the DF model introduced in the following section. Its contri-
bution to the potential is a constant equal to V 2

s ln(1+ c)/c.
Fig. 2 shows the resulting energies and angular mo-

menta of particles inside the virial sphere of one of the sim-
ulated haloes. The profile of the maximum angular momen-
tum (solid line) and the profile of vanishing radial velocity
at the virial sphere (dashed line) were calculated for the
exact gravitational potential given by (17). All particles oc-
cupy the area permitted by mechanics or lie very close to the
boundary line. Interestingly, quite a large fraction of them
have orbits extending beyond the virial sphere. As noted in
the previous section, we keep V 2

s and Ls as units of energy
and angular momentum respectively. The parameters of the
NFW model were obtained for each halo by fitting the NFW
formula to the density profile measured in logarithmic radial
bins.

In the next step we determine for each halo the dif-
ferential DF given by (8). In this calculation we used our
own version of the FiEstAS (Field Estimator for Arbitrary
Spaces) algorithm designed to infer the density field from a
scatter diagram embedded in a space of any number of di-
mensions (see Ascasibar & Binney 2005 for more details). As
a result of this computation we get an estimate of N(E, L)
at all points of the energy-angular momentum plane cor-
responding to the particles inside the virial sphere. Once
N(E, L) is calculated the DF can be easily obtained via (8).
As discussed in section 2, we used approximation (12) for
the orbits contained inside the virial sphere and the exact
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Figure 3. Contour maps of the DF of DM particles inside the
virial sphere of two example haloes. The profile of the maximum
angular momentum is indicated by Lmax(E) and the line of van-
ishing radial velocity at the virial sphere by ra = rv (apocentre
at the virial sphere) or rp = rv (pericentre at the virial sphere).

formula (9) with (15) for trajectories extending beyond rv.
We found that the additional advantage of expression (12) is
that it could be evaluated at any point of the energy-angular
momentum plane. This helps us to keep the estimates of
the DF obtained for points with angular momentum lying
slightly above Lmax(E).

In order to derive a contour map or a profile of the DF
we introduce a regular dense mesh on the energy-angular
momentum plane and find the median value of the DF in
each cell. Such a set of median points is considered as the fi-
nal numerical approximation of the DF and is used in prepa-
ration of all plots in this paper. Fig. 3 shows two exam-
ples of the resulting contour maps obtained for two different
haloes. The unit of the DF in this and following Figures is
Ms/r3

s /V 3
s . The interval between the iso-DF lines is fixed

at value 0.25 of the logarithmic scale. The lack of the DF
estimation in the lower part of each diagram arises from the
fact that this zone is occupied by very few particles (see e.g.
Fig. 2) so that no information on the distribution can be
retrieved. Let us note that this is an effect of the finite mass
resolution.

c⃝ 0000 RAS, MNRAS 000, 000–000

8 R. Wojtak et al.

0.04 < L0/Ls < 25), this radius is well (within 5 percent
accuracy) approximated by

r0/rs = 3.69(L0/Ls)
0.97 + 2.27(L0/Ls)

1.9. (27)

5 COMPARISON WITH THE SIMULATION

5.1 The distribution function

The DF proposed in the previous section is a phenomeno-
logical model in the sense that it possesses free parameters
whose values should be adjusted to the simulation data. All
three parameters were introduced to determine a family of
anisotropy profiles so that it is β(r) that is most sensitive
to the variations of β0, β∞ and L0. Consequently, we de-
cided to constrain the parameters of the model by fitting
the β(r) profile inferred from the DF model to the median
profile measured in simulated DM haloes. The best-fitting
parameters are: β0 = 0.09, β∞ = 0.34 and L0 = 0.198 Ls.
The corresponding best-fitting profile of the anisotropy is
plotted as a dashed line in the lower left panel of Fig. 9.

Once the model parameters are adjusted the DF can be
compared with its counterpart measured from the simula-
tion. Fig. 7 shows this comparison in terms of a contour map
and the profiles for constant angular momentum or energy.
Dark gray regions in all panels indicate the interquartile
range of the DF values within the halo sample. The lighter
gray area in the background of the upper diagram marks the
points of vanishing radial velocity at the virial radius rv. Its
boundaries are fixed by the first and third quartile of virial
radii in the halo sample, 4.1rs and 6.0rs respectively.

Although some deviations of the model (dashed lines)
from the results of the simulations are visible, in general
the theoretical profiles are included within the interquartile
range or lie very close to its boundaries. As expected, the
strongest discrepancy between the model and the simula-
tion is present in the part of the energy-angular momentum
plane populated by the particles with orbits extending be-
yond the virial sphere (the area to the left of the ra = rv

line). However, given that this is the only part of the energy-
angular momentum plane affected by the infalling material,
we think that the observed differences are acceptable.

5.2 The separability of the distribution function

A critical point of the derivation of the DF presented in the
previous section was the factorization introduced by equa-
tion (18). In order to inspect the robustness of this assump-
tion we propose a simple test. We calculate the ratio of the
DF from the simulation to the energy part of the DF model
with parameters adjusted to the anisotropy profile from the
simulation. Under the assumption that the real DF is factor-
izable in energy and angular momentum, we can expect that
the resulting ratio should be a weak function of energy equal
to fL(L) given by (23). Fig. 8 shows that the variations of
this ratio with respect to fL(L) are of the same order as
the width of the interquartile range which means that sep-
arability is acceptable from the statistical point of view. A
small systematic deviation can be seen for L ∼ 0.1 Ls. How-
ever, this is certainly a local feature since this trend is not
repeated in other profiles. Let us emphasize that this test
of separability depends strongly on the reliability of fL(L).
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Figure 7. Comparison between the DF measured for DM parti-
cles inside the virial sphere of the simulated haloes and the model
with parameters adjusted to the median anisotropy, β0 = 0.09,
β∞ = 0.34 and L0 = 0.198 Ls. Solid lines and gray areas stand
for median profiles and interquartile ranges of the DF measured
in the halo sample, whereas the dashed lines correspond to the
model. The light gray area in the background of the upper dia-
gram indicates the points of vanishing radial velocity at the virial
radius rv. Its boundaries are fixed by the first and third quartile
of virial radii in the halo sample.

One can imagine that an incorrect form of fL(L) would likely
lead to a negative result of the test, whether f(E, L) is sepa-
rable or not. On the contrary, a positive result of such a test
in our case means that not only is the assumption of factor-
ization valid but the approximation for fL(L) is reasonable
as well.
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0.04 < L0/Ls < 25), this radius is well (within 5 percent
accuracy) approximated by

r0/rs = 3.69(L0/Ls)
0.97 + 2.27(L0/Ls)

1.9. (27)

5 COMPARISON WITH THE SIMULATION

5.1 The distribution function

The DF proposed in the previous section is a phenomeno-
logical model in the sense that it possesses free parameters
whose values should be adjusted to the simulation data. All
three parameters were introduced to determine a family of
anisotropy profiles so that it is β(r) that is most sensitive
to the variations of β0, β∞ and L0. Consequently, we de-
cided to constrain the parameters of the model by fitting
the β(r) profile inferred from the DF model to the median
profile measured in simulated DM haloes. The best-fitting
parameters are: β0 = 0.09, β∞ = 0.34 and L0 = 0.198 Ls.
The corresponding best-fitting profile of the anisotropy is
plotted as a dashed line in the lower left panel of Fig. 9.

Once the model parameters are adjusted the DF can be
compared with its counterpart measured from the simula-
tion. Fig. 7 shows this comparison in terms of a contour map
and the profiles for constant angular momentum or energy.
Dark gray regions in all panels indicate the interquartile
range of the DF values within the halo sample. The lighter
gray area in the background of the upper diagram marks the
points of vanishing radial velocity at the virial radius rv. Its
boundaries are fixed by the first and third quartile of virial
radii in the halo sample, 4.1rs and 6.0rs respectively.

Although some deviations of the model (dashed lines)
from the results of the simulations are visible, in general
the theoretical profiles are included within the interquartile
range or lie very close to its boundaries. As expected, the
strongest discrepancy between the model and the simula-
tion is present in the part of the energy-angular momentum
plane populated by the particles with orbits extending be-
yond the virial sphere (the area to the left of the ra = rv

line). However, given that this is the only part of the energy-
angular momentum plane affected by the infalling material,
we think that the observed differences are acceptable.

5.2 The separability of the distribution function

A critical point of the derivation of the DF presented in the
previous section was the factorization introduced by equa-
tion (18). In order to inspect the robustness of this assump-
tion we propose a simple test. We calculate the ratio of the
DF from the simulation to the energy part of the DF model
with parameters adjusted to the anisotropy profile from the
simulation. Under the assumption that the real DF is factor-
izable in energy and angular momentum, we can expect that
the resulting ratio should be a weak function of energy equal
to fL(L) given by (23). Fig. 8 shows that the variations of
this ratio with respect to fL(L) are of the same order as
the width of the interquartile range which means that sep-
arability is acceptable from the statistical point of view. A
small systematic deviation can be seen for L ∼ 0.1 Ls. How-
ever, this is certainly a local feature since this trend is not
repeated in other profiles. Let us emphasize that this test
of separability depends strongly on the reliability of fL(L).
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Figure 7. Comparison between the DF measured for DM parti-
cles inside the virial sphere of the simulated haloes and the model
with parameters adjusted to the median anisotropy, β0 = 0.09,
β∞ = 0.34 and L0 = 0.198 Ls. Solid lines and gray areas stand
for median profiles and interquartile ranges of the DF measured
in the halo sample, whereas the dashed lines correspond to the
model. The light gray area in the background of the upper dia-
gram indicates the points of vanishing radial velocity at the virial
radius rv. Its boundaries are fixed by the first and third quartile
of virial radii in the halo sample.

One can imagine that an incorrect form of fL(L) would likely
lead to a negative result of the test, whether f(E, L) is sepa-
rable or not. On the contrary, a positive result of such a test
in our case means that not only is the assumption of factor-
ization valid but the approximation for fL(L) is reasonable
as well.
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FIG. 4. The probability distribution of the speed distribution, f1(v), resulting from the scan of the parameters of the MW mass model (see Sec.
III) for, from left to right, the NFW, Einasto and Burkert DM halo profiles. In this case the speed distribution is obtained using the Eddington
formalism, which assumes isotropy. The light (dark) blue band indicates the 68% (95%) credible region, while the solid black line corresponds
to the mean.
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FIG. 5. As Fig. 4 but for the speed distribution, f1(v), obtained using the procedure described in Sec. IV which allows the DM halo to be
anisotropic. The light (dark) green band indicates the 68% (95%) credible region, while the solid black line corresponds to the mean. The
solid blue line indicates the mean of the distribution of f1(v) obtained from the Eddington procedure (as in Fig. 4). In the left panel (for the
NFW DM halo), the dotted line is the Standard Halo Model Maxwell-Boltzmann distribution, Eq. (1), while the dashed line shows the Mao et
al. parametrization from Ref. [112]. In both cases the parameters are set to their mean values from Tab. II.

the assumption of an isotropic velocity tensor. The solution
obtained will be self-consistent, since it depends entirely on
the potential of the system.
We extended this approach to the case of an anisotropic ve-

locity tensor following the procedure introduced in Ref. [35],
where the phase-space density F(E, L) is separable in the two
variables F(E, L) = FE(E)FL(L). Ref. [35] parametrized the
L-dependent component in terms of three quantities (β0, β∞
and L0) and showed that, once this is done, self-consistent so-
lutions can be obtained for each given mass model simply by
inverting a Volterra integral equation. The phase-space den-
sity obtained provides good fit to the radial dependence of the
velocity anisotropy parameter measured in simulated DM ha-
los surrounding galaxy clusters.
We apply the same procedure to the description of the MW

DM halo, noting that this strategy extends the Eddington for-
malism to anisotropic scenarios (see also Ref. [20]). It fol-

lows the same general approach employed when dealing with
mass models of the MW: unknown quantities (e.g. the density
profiles of the matter components of the MW) are parame-
terized and the parameters are constrained by a set of obser-
vations. There are no observations that directly constrain the
three parameters introduced for FL(L), therefore they must be
marginalized over. This could, in principle, spoil any hope
to reconstruct the velocity distribution if f1(v) were to vary
considerably as β0, β∞ and L0 are varied.
Our main conclusions are:

• While FE(E) depends strongly on the values chosen for
β0, β∞ and L0, this is not the case for f1(v) and an ac-
ceptable reconstruction can still be achieved.

• The precision reached is, as expected, worse than when
the Eddington formalism, which assumes isotropy, is
used. However f1(v) is determined within a factor of
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III) for, from left to right, the NFW, Einasto and Burkert DM halo profiles. In this case the speed distribution is obtained using the Eddington
formalism, which assumes isotropy. The light (dark) blue band indicates the 68% (95%) credible region, while the solid black line corresponds
to the mean.
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solid blue line indicates the mean of the distribution of f1(v) obtained from the Eddington procedure (as in Fig. 4). In the left panel (for the
NFW DM halo), the dotted line is the Standard Halo Model Maxwell-Boltzmann distribution, Eq. (1), while the dashed line shows the Mao et
al. parametrization from Ref. [112]. In both cases the parameters are set to their mean values from Tab. II.

the assumption of an isotropic velocity tensor. The solution
obtained will be self-consistent, since it depends entirely on
the potential of the system.
We extended this approach to the case of an anisotropic ve-

locity tensor following the procedure introduced in Ref. [35],
where the phase-space density F(E, L) is separable in the two
variables F(E, L) = FE(E)FL(L). Ref. [35] parametrized the
L-dependent component in terms of three quantities (β0, β∞
and L0) and showed that, once this is done, self-consistent so-
lutions can be obtained for each given mass model simply by
inverting a Volterra integral equation. The phase-space den-
sity obtained provides good fit to the radial dependence of the
velocity anisotropy parameter measured in simulated DM ha-
los surrounding galaxy clusters.
We apply the same procedure to the description of the MW

DM halo, noting that this strategy extends the Eddington for-
malism to anisotropic scenarios (see also Ref. [20]). It fol-

lows the same general approach employed when dealing with
mass models of the MW: unknown quantities (e.g. the density
profiles of the matter components of the MW) are parame-
terized and the parameters are constrained by a set of obser-
vations. There are no observations that directly constrain the
three parameters introduced for FL(L), therefore they must be
marginalized over. This could, in principle, spoil any hope
to reconstruct the velocity distribution if f1(v) were to vary
considerably as β0, β∞ and L0 are varied.
Our main conclusions are:

• While FE(E) depends strongly on the values chosen for
β0, β∞ and L0, this is not the case for f1(v) and an ac-
ceptable reconstruction can still be achieved.

• The precision reached is, as expected, worse than when
the Eddington formalism, which assumes isotropy, is
used. However f1(v) is determined within a factor of
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• self-consistent f(v) provide a more complete description of the 
system	

!

• search for parametrisations of F(E,L) instead than of f(v)	

!

• self-consistent f(v) are no longer available only for isotropic systems	

!
• anisotropic models considered also include the Milky Way	

!

• work is in progress in relaxing the hypotheses made about FL(L) and 
in generalising the scenario
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Figure 5. The top panels show (from left to right) the anisotropy, dispersion and kurtosis of the radial velocity inferred from the model
of the DF with four sets of parameters: β0 = 0.1, L0 = 0.25 Ls and β∞ = 0.3, 0.5 (solid and dashed lines respectively); β0 = β∞ = 0.3,
L0 = 0.25 Ls (dotted line); β0 = 0.4, L0 = 0.25 Ls and β∞ = 0.1 (dashed-dotted line). The corresponding DFs for the same sets of
parameters are plotted in the bottom panels in terms of: the energy part of the DF fE(E) (left), iso-DF lines with values indicated
along the curve of maximum angular momentum (middle) and the profiles of the DF for three values of angular momentum (right). In
all calculations the NFW density profile was assumed.

β(r) profiles lead to less peaked velocity distributions in the
centre. It seems therefore that the typical anisotropy of DM
haloes, as shown in Fig. 4, is expected to coincide with the
kurtosis rapidly growing towards the halo centre (see also
Fig. 10 below). As we will see in the following section, this
is one of the most characteristic features of the phase-space
structure of massive DM haloes.

In the bottom panels of Fig. 5 we plotted the DFs cor-
responding to four sets of model parameters, as described
above. The three panels from the left to the right show the
energy part of the DF, contour maps and the profiles for
three fixed values of angular momentum. The plots reveal
some interesting signatures of the specific shape of β(r) pro-
file. For example, the inclination of the iso-DF lines with re-
spect to the energy axis decreases with increasing β0: more
isotropic β at the centre corresponds to more vertical iso-
DF lines; also the shape of the lines is somewhat different.
These features are also to some extent visible in the contour
maps of the DF for two simulated haloes in Fig. 3. The up-
per map represents a halo with an increasing β(r), whereas
the second one depicts the case of a decreasing β(r) profile.
Both haloes are analyzed in terms of velocity moments and
the DF in the following section.

Recently Mamon & "Lokas (2005) found that the simu-
lation data are well reproduced by the anisotropy profile of
the form

β(r) =
1
2

r
r + r1/4

, (25)

where r1/4 is the radius where β = 0.25. Assuming β0 = 0
and β∞ = 0.5 in our DF model, we made a comparison
of the resulting anisotropy with the functional form (25).
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Figure 6. Comparison between the functional form of the
anisotropy (25) proposed by Mamon & !Lokas (2005) (βML)
and β(r) inferred from the DF model (βDF) with β0 = 0 and
β∞ = 0.5.

Fig. 6 shows both anisotropies for three values of r1/4. Note
that both β(r) profiles have similar shapes, although our
anisotropy profile has a somewhat sharper rise at small radii.

We also find that the radius r0 characteristic of the DF
model, for which β is the mean of the limiting values

β(r0) =
β0 + β∞

2
, (26)

depends weakly on β0 and β∞. For parameter ranges leading
to β(r) profiles covering the interquartile area of anisotropy
from the simulation (0 < β0 < 0.15, 0 < β∞ < 0.6 and

c⃝ 0000 RAS, MNRAS 000, 000–000

Wojtak et al. (2008)
(β0,β∞,L0)=(0.1, 0.2, 0.25 Ls)

(β0,β∞,L0)=(0.1, 0.3, 0.25 Ls)

(β0,β∞,L0)=(0.3, 0.3, 0.25 Ls)

kinematically	

forbidden


