Search for cosmological dark matter with noble liquids

Emilija Pantic (UC Davis)

June 23, 2014 at TeVPA/IDM

E.Pantic (TeVPa/IDP 14') pantic@ucdavis.edu

Status of searches for testable DM candidates

 $\mathsf{DM} \in \{\mathsf{WIMPs}, \mathsf{LSP}, \mathsf{Axion}, \mathsf{Sterile} \ \nu, \mathsf{KKP}, \mathsf{gravitinos}, \mathsf{Asymm.DM}, \mathsf{hidden sector} \ \mathsf{DM} \ \ldots \}$

Direct dark matter searches can probe various **DM** candidates **NOT** only WIMPs. WIMP class is the most exploited for various reasons so far. No definitive signal is bringing wide DM candidate search back in the focus.

Noble liquids searching for WIMPs ("vanilla" SI interaction)

/ 36

WIMP Signal in noble liquids ("vanilla" SI interaction)

Mass Range $\approx (1 \text{MeV}/\text{c}^2 - 10 \text{TeV}/\text{c}^2)$ Signal (M \gtrsim 1GeV/c²) = single nuclear recoil (NR). Background = electronic recoil, NR from n, NR of other than target nuclei, degraded α recoil, accidental, ...

Noble liquid targets

Noble liquids are radio-pure, going after ultra radio-pure.

_	LXe -nat	LAr-nat	LAr-UG	LHe
A	131.3	40.0		4
$ ho~[{ m g/cm^3}]$	2.94	1.40		0.145
λ [nm]	178	125		80
$LY _{E=0} \left[\frac{ph}{MeV}\right]$	42000	40000		19000
Isotope [mBq/kg] 222 Rn [μ Bq/kg] nat Kr	$\ll^{a} (^{136}$ Xe) $^{c}(3-20)$ $^{f}\mathcal{O}(1$ ppt)	10 ³ (³⁹ Ar) < ^d 0.8- ^e 16 NA	< ^b 6.5(³⁹ Ar) NA ≪ ^g	none NA NA

a: ¹³⁶Xe ($T_{1/2} = 2.2 \ 10^{21} \ y$); b: Cosmic rays and radiogenic processes induce ³⁹Ar, underground Ar is depleted, 1204.6061, 1204.6024, C: Rn removal using activated carbon, 1309.7024, d: preliminary result from DS-50, e: DEAP 1406.0462; f: ⁸⁵Kr: removal by cryogenic distillation/chromatography/centrifuges 1309.7024, g: ⁸⁵Kr: radiogenic origin, should not be present in underground Ar

Against neutron background

n: μ -induced, α -n, fission reactions Go underground reduce μ flux. Not enough except @CJPL lab. Shielding against μ -induced n insufficient, but will reduce ext. γ

To reduce radiogenic neutrons from detector material: Material screening via Ge, Mass spectroscopy, NAA ... Build neutron veto close to target to detect escaping neutrons Only DarkSide program uses boron-loaded LSV (1010.3609v1) Vetos enable both rejection and characterization of the background!

Light in single phase noble liquid detector

 4π coverage of PMTs gives excellent light yield.

High surface radio-purity in single phase - LXe Surface contamination of PMTs + poor po-

sitioning of surface events limited the sensitivity of first run.

High LY and pulse timing in single phase - LAr

Pulse shape discrimination crucially depends on # of photons. PSD power = $O(10^7 - 10^{11})$

Current best PSD =DEAP-1 is 10⁸ at ~100PE (0904.2930) Challenge for LAr, but validations are ongoing! Model the F90 discrimination parameter to accounts for macroscopic effects related to argon micro-physics, detector properties and reconstruction and noise effects(see DarkSide - talk at UCLA 2014) E.Pantic (TeVPa/IDP 14') pantic@ucdavis.edu

About to take data single phase - LAr + CW

DEAP-3600/1000kg

CLEAN-500/150kg

Dual phase noble liquid detectors - Present

XENON100 data taking of web

see talk of 0.000 and 161kg ≳34kg

DarkSide-50 data taking atm Ar

g atm Ar 150kg ≳**40kg**

see talk at UCLA DM14'

PandaX Ia 1st data taking

ArDM 1st data taking

 $\gtrsim 100$ kg $\gtrsim 100$ kg

see talk at UCLA DM14'

Background rejection in dual phase

 $\label{eq:Fiducialization} Fiducialization + Multiple \ scatter + PSD(LAr) + S2/S1 + Active \ veto$

Background rejection via 3D event reconstruction

Electronic recoil background rejection via S2/S1

S1 x,y,z corrected (phe)

Electronic recoil background rejection via PSD

DarkSide-50: Background free exposure of 280kg·day with AAr. Corresponds to that expected in 2.6 year of UAr DS-50 run.

Electronic recoil background rejection via PSD

DS-50 has $\times 10$ more data with AAr \Rightarrow preparing publication. Final goal is 18ton-y exposure to probe PSD for DS-G2.

Energy scale via S1 or S2 is nonlinear

Twice the energy recoil (NR/ER) \neq twice the signal in S1 (S2). Same energy NR and ER give different signal in S1 (S2). Same energy recoil different E-field \neq same signal in S1 (S2).

Recoil energy reconstruction via S1 or S2

Recoil energy reconstruction via S1 + S2

Modeling using experimental data and recombination theory. **Publicly available = NEST** 1106.1613

See also 1007.3549, 1101.6080,1011.3990 and See talk by A. Hitachi on Wednesday

$$E_{nr} = E_n \frac{2m_n M_{Xe}}{(m_n + M_{Xe})^2} (1 - \cos\theta)$$

/36

LXe response to NR via neutron tagging

More results SOON R&D detectors with 3D positioning NeRiX@Columbia $\Rightarrow \mathcal{L}_{eff}, \mathcal{Q}_y$ @E-field @U-M $\Rightarrow \mathcal{L}_{eff}, \mathcal{Q}_y$ @E-field

Field quenching at low-E NEEDED! NEST predicts small field quenching

LAr response to NR via neutron tagging/end-point

Tagged neutron beam in SCENE (new results see 1406.4825)

LAr response to NR - investigate directionality

Tagged neutron beam in SCENE (new results see 1406.4825)

Light and charge yield in LUX see talk of Energy scale based on S1 + S2 and modeled using NEST. Respective $\mathcal{L}_{eff}S_{nr}$ and \mathcal{Q}_y (model NOT fit) in agreement with data

Conservative threshold used in LUX 2014 Result arXiv:1310.8214 Analysis ongoing with data and model driven estimates, including new measurements of $\mathcal{L}_{eff}S_{nr}$ and \mathcal{Q}_y in situ.

/ 36

Energy threshold for S1+S2 analysis

 \geq 2PE threshold in S1 to avoid PMT dark counts in LXe. $\geq \mathcal{O}(10)$ PE in S1 for PSD in LAr.

 \geq 1 e⁻ threshold in S2 to avoid single electron background.

S2 is amplified, the limiting factor is S1 LY.

E.Pantic (TeVPa/IDP 14') pantic@ucdavis.edu

Most sensitive "standard" WIMP search - LUX

Observation consistent with background only hypothesis (PL). ER background understood. New run with lower ER background.

Current limits

Low mass WIMP S2-only studies to come

1011.6439, 1104.3088

Energy scale for DM coupling to electrons

Electronic recoil scale with field quenching.

LY(ER) at zero field in LXe Field quenching at 450V/cm

NEST validation \Uparrow predictions \Rightarrow

More measurements in LXe, LAr $Q_{y}(ER)$ at E-field soon

Noble liquid detectors - Future

XENON1T construction

XENONnT LZ

under select. under select.

PandaX Ib

∃ III phase

XMASS-1.5

∃ III phase 25/10t

36

DS-G2 under selec.

DEAP-50t R&D

Darwin R&D LXe/LAr

Noble liquids - sensitivity to WIMPs ("vanilla" SI interaction)

/ 36

Noble liquids - sensitivity to WIMPs ("vanilla" SI interaction)

use of annual modulation or directional detection, target complementarity

/ 36