CMS Results on Quarkonium Spectroscopy

Elif Aslı Yetkin on behalf of CMS November 10, 2014

Mimar Sinan Fine Arts University, Turkey Boğaziçi University, Turkey

Quarkonium 2014

Measurement of the prompt J/ ψ pair production in pp collisions at $\sqrt{s} = 7$ TeV

Double J/ψ Production at CMS

- J/ ψ mesons are fully reconstructed via their decays into $\mu^+\mu^-$ pairs.
 - $J/\psi J/\psi \rightarrow (\mu^+\mu^-)(\mu^+\mu^-)$
- First time access to the high-transverse-momentum region where model predictions are not yet established
 - Complementary to LHCb measurement (p_T and rapidity)
- Correlation of two J/ ψ mesons: SPS (single parton scattering) vs DPS (double parton scattering)
- The total and differential cross sections are measured in a phase space defined by the individual J/ψ transverse momentum and rapidity

$$\begin{split} p_T^{J/\psi} &> 6.5 \text{GeV if } |y^{J/\psi}| < 1.2 \\ p_T^{J/\psi} &> 6.5 \to 4.5 \text{GeV if } 1.2 < |y^{J/\psi}| < 1.43 \\ p_T^{J/\psi} &> 4.5 \text{GeV if } 1.43 < |y^{J/\psi}| < 2.2 \end{split}$$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11021

JHEP 09 (2014) 094

Double J/ψ Production at CMS

The total cross section assuming unpolarized prompt J/ψ pair production

$$\sigma(pp \to J/\psi J/\psi + X) = 1.49 \pm 0.07 \pm 0.13 \,\text{nb}$$

Differential cross section as a function of $M_{J/\psi J/\psi}$

Differential cross section as a function of $P_T^{J/\psi J/\psi}$

Differential cross section as a function of $|\Delta y(J/\psi, J/\psi)|$

- The differential cross section decreases rapidly as a function of $|\Delta y|$
 - A non-zero value in 2.6-4.4 $|\Delta y|$ bin \Rightarrow can be populated via DPS production?
- No evidence for the η_b resonance in the J/ ψ pair invariant-mass distribution

Observation of the structures in the J/ψφ mass spectrum

History of Y(4140)

• March 2009

A third independent experimental result was needed to break the deadlock

* CDF report evidence of a narrow peak in J/ $\psi \phi$ spectrum in decays of B⁺ \to J/ $\psi \phi$ K⁺ (PRL 102 242002, 2009)

• August 2009

* Belle searched for the same state in the same channel and see no Y(4140) signal. Set limit on production rate, but cannot exclude CDF peak

• December 2009

* Belle searched for direct production $\gamma\gamma \rightarrow J/\psi\phi$, observed no Y(4140) signal, disfavors Ds*Ds* meson molecule interpretation, see 3.2 σ excess at 4350 MeV (PRL 1004 112004, 2010)

January 2011

* CDF updated their results with a larger dataset. Observed Y(4140) with 5σ significance (arXiv:1101.6058)

Ferbruary 2011

* LHCb searched for the same state in the same channel, no Y(4140) signal, set limit at 2.4σ tension with CDF (PRD 85 091103(R), 2012)

CMS Search in the J/ψφ Mass Spectrum

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11026 PLB 734 (2014) 261

Observation of Peaks in the J/ψφ Mass Spectrum in B Decays

The $\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$ is used to investigate the possible structures

 $\Delta m > 1.568$ GeV region is excluded to avoid background from Bs $\rightarrow \psi(2S)\phi \rightarrow J/\psi \pi^+\pi^-\phi$ decays

The Δm Spectrum is extracted by BACKGROUND SUBTRACTION

- \rightarrow Divide the dataset into the 20 MeV Δ m bins
- ightharpoonup Extract the number of B signal for each Δm by fitting the J/ψφK spectrum
 - → Mean is fixed to the PDG value of B mass
 - RMS is fixed to the number predicted by simulation

- CMS observed a J/ $\psi \varphi$ structure at 4148MeV with a significance greater than 5 σ confirms the existence of Y(4140) from CDF
 - CDF Y(4140): $m=4143.4^{+2.9}_{-3.0}$ (stat) ± 0.6 (syst), $\Gamma=15.3^{+10.4}_{-6.1}$ (stat) ± 2.5 (syst) MeV
- Evidence for a second structure at ~4314MeV in the same mass spectrum
- Later D0 also confirmed Y(4140) with a significance of 3σ

Further Investigation in the Whole Δm Region

The Δm spectrum after subtracting B^0_S contribution but including non-B events, within 1.5σ (σ = 9.3MeV) of the B mass

The extension of the Δm spectrum, after subtracting non-B background, to the full phase space.

The events in previous cutoff region are consistent with phase space.

The absence of strong activity in the high- Δm region reinforces our conclusion that the near-threshold narrow structure is not due to a reflection of other resonances.

Search for a new bottomonium state decaying to $Y(1S)\pi^+\pi^-$ at CMS

Search for a new bottomonium state decaying to $Y(1S)\pi^+\pi^-$

X(3872) observed in the J/ $\psi \pi^+ \pi^-$ final state:

A bottomonium counterpart (X_b) may exist and expected to decay into $Y(1S)\pi^+\pi^-$

Predicted to have a mass close to the $B\overline{B}$ (10.562 GeV) or $B\overline{B}^*$ (10.604 GeV) thresholds Similar to X(3872), should have a narrow resonance with a sizable decay rate in the $Y(1S)\pi^+\pi^-$ final state

Analysis Strategy: searching for a peak, other than the known Y(2S) and Y(3S) resonances, in the Y(1S)($\mu^+\mu^-$) $\pi^+\pi^-$ invariant-mass spectrum

The ratio R =
$$\frac{\sigma_{X_b} \times BR(X_b \to \Upsilon(1S)\pi^+\pi^-)}{\sigma_{\Upsilon(2S)} \times BR(\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-)}$$
 is measured as a function of X_b mass (10-11 GeV)

Kinematic Region: $p_T(Y(1S)\pi^+\pi^-) > 13.5 \text{ GeV } \& |y(Y(1S)\pi^+\pi^-)| < 2.0$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11016
Phys. Lett. B 727 (2013) 57

Reconstruction of X_b

- 1. Reconstruction of $Y(1S) \rightarrow \mu^{+}\mu^{-}$
- 2. Combine Y(1S) with two oppositely charged pion tracks
- 3. A common-vertex constrained fit is applied to the 4-tracks ($\mu^+\mu^-\pi^+\pi^-$)
 - dimuon invariant mass is constrained to the world-average Y(1S) mass

Candidate selection is optimized to maximize the expected signal significance near Y(2S) mass

Candidates are separated into the **barrel** (|y| < 1.2) and **endcap** (1.2 < |y| < 2.0) given different mass resolution

No structure is observed other than $Y(2S) \rightarrow Y(1S)\pi^+\pi^-$ and $Y(3S) \rightarrow Y(1S)\pi^+\pi^-$

invariant mass distributions of the $Y(1S)(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ candidates

Searching for X_b

Exploring 10.06-10.31 and 10.40-10.99 GeV mass intervals excluding the Y(2S) and Y(3S) resonances

Shifting the hypothetical X_b mass in 10 MeV intervals to evaluate signal significance

Unbinned maximum-likelihood fits are performed on the invariant mass distribution

- Signal → Single Gaussian function:
 - width is fixed to the values obtained from simulation
- Background \rightarrow 3rd degree polynomial
 - modeled separately for low and high mass intervals

At each X_b mass point the ratio R is evaluated

Assumptions (simulation) for Y(2S) and X_b

- same production mechanism
- both are unpolarized
- same dipion mass distribution

No strong hint of a signal:

95% CL upper limit on the ratio of the production cross sections times branching fractions of the X_b and Y(2S): 0.9 - 5.4 %

Is upper limit on X_b production measured at a hadron collider

Summary

- Thanks to the excellent LHC and detector performances, CMS made important measurements in the quarkonium sector, among which:
 - \rightarrow prompt J/ ψ pair production measurement
 - \rightarrow first time at high p_T region
 - \implies observation of a peaking structure in the J/ $\psi \varphi$ mass spectrum
 - \Rightarrow confirmed Y(4140) with a significance >5 σ , and saw evidence for a second structure in the same mass spectrum
 - \rightarrow D0 also confirmed Y(4140) with a significance of 3 σ
 - \implies searching for a new bottomonium state decaying to Y(1S) $\pi^{+}\pi^{-}$
 - → No significant excess is observed
 - \rightarrow 95% CL upper limit on the (σ x Br) ratio: 0.9 5.4 %

All CMS B-Physics results are available at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

Backup Slides

Recent Results From D0 and Babar

D0 found evidence at >3 σ significance for the decay B+ \to X(4140)K+, X(4140) \to J/ ψ φ

The mass, width, and relative decay branching fraction are measured to be:

$$\mathbf{m_1} = 4159.0 \pm 4.3(\text{stat.}) \pm 6.6(\text{syst.}) \text{ MeV}$$

 $\mathbf{\Gamma_1} = 19.9 \pm 12.6(\text{stat.}) + 1.8(\text{syst.}) \text{ MeV}$

$$\frac{\mathcal{B}[B^+ \to X(4140)K^+]}{\mathcal{B}[B^+ \to J/\psi\phi K^+]} = [21 \pm 8(stat.) \pm 4(syst.)] \%$$

Measured branching fractions, branching ratios and searched for $J/\psi \varphi$ mass structure

Fit fractions obtained assuming two resonances

Current Status of J/ψφ System

