**Charm Baryons From Lattice QCD** 



Department of Theoretical Physics, TIFR, INDIA

Collaborators: R. Edwards, M. Padmanath and M. Peardon @ Hadron Spectrum Collaboration

# Charm baryons—why do we need to study them?

♣ Have not been studied (both experimentally and theoretically (to some extent)) in great details as charmed mesons even though they can provide similar information about the theory of strong interaction

#### Singly charmed baryons:

- light quark dynamics in presence of one heavy quark.
- Experimentally many more states should be observed.

#### Doubly charmed baryons :

- nature of strong force in the presence of slow relative motion of the heavy quarks along with the relativistic motion of a light quark.
- Is there any quark-diquark symmetry :  $[QQ]q \sim Q'q$ ?
- Experimental discovery is not settled

#### Triply-charmed baryons:

- Charmonia analogues in baryons
- Quark-quark interaction
- No experimental discovery yet

## **Charm baryons—Theory**

✓ There are many results from various model calculations

✓ Lattice results are available, but only for ground state spectra up to spin 3/2



## Doubly charmed baryons



## **Charm baryons--Theory**

Need : A comprehensive lattice QCD study of energy spectra, including excited states, of charm baryons

➤ A first step towards that goal has recently been taken

#### Charm hadron excited states from Lattice QCD

- Charm quarks being heavy  $\Rightarrow$  The discretization errors (ma) are generally very large.
- The exponential decay is very rapid.
   Rapid degradation of SNR for highly excited states.

Solution : Anisotropic lattices

Multiple excited state extraction : Multi parameter fit.
 Extremely cumbersome.

Solution: A large basis of interpolating operators

- A good analysis procedure for extraction of energy of physical states.
- Spin identification : Highly non-trivial

Solution: Variational fitting method

#### Spectroscopy: baryon operator construction

- Aim : Extraction of highly excited states.
   Local operators → low lying states.
   Extended operators → States with radial and orbital excitations.
- Proceeds in two steps
   Construct continuum operators with well defined quantum nos.
   Reduce/subduce into the irreps of the reduced symmetry.
- Used set of baryon continuum operators of the form  $\Gamma^{\alpha\beta\gamma}q^{\alpha}q^{\beta}q^{\gamma}$ ,  $\Gamma^{\alpha\beta\gamma}q^{\alpha}q^{\beta}(D_iq^{\gamma})$  and  $\Gamma^{\alpha\beta\gamma}q^{\alpha}q^{\beta}(D_iD_iq^{\gamma})$
- Excluding the color part, the flavor-spin-spatial structure

$$O^{[J^P]} = \left[\mathcal{F}_{\Sigma_F} \otimes \mathcal{S}_{\Sigma_S} \otimes \mathcal{D}_{\Sigma_D}\right]^{J^P}.$$

- $\gamma$ -matrix convention :  $\gamma_4 = \text{diag}[1,1,-1,-1]$ ; Non-relativistic  $\rightarrow$  purely based on the upper two component of q. Relativistic  $\rightarrow$  All operators except non-relativistic ones.
- Subset of  $D_i D_j$  operators that include  $[D_i, D_j] \sim F_{ij} \rightarrow$  hybrid.

## No. of interpolating operators

| C | 7 |   |   |   |
|---|---|---|---|---|
| 7 | L | С | С | C |

|        | $G_1$ |    | ŀ  | Н  |    | $G_2$ |  |
|--------|-------|----|----|----|----|-------|--|
|        | g     | и  | g  | и  | g  | и     |  |
| Total  | 20    | 20 | 33 | 33 | 12 | 12    |  |
| Hybrid | 4     | 4  | 5  | 5  | 1  | 1     |  |
| NR     | 4     | 1  | 8  | 1  | 3  | 0     |  |

#### $\Lambda_{cdu}$

|              | $G_1$ |    | ŀ  | Н  |    | $G_2$ |  |
|--------------|-------|----|----|----|----|-------|--|
|              | g     | и  | g  | и  | g  | и     |  |
| Total        | 53    | 53 | 86 | 86 | 33 | 33    |  |
| Hybrid<br>NR | 12    | 12 | 16 | 16 | 4  | 4     |  |
| NR           | 10    | 3  | 17 | 4  | 7  | 1     |  |

 $\Omega_{ccs}$ ,  $\Xi_{ccu}$ ,  $\Omega_{css}$  and  $\Sigma_{cuu}$ .

|        | $G_1$ |    | ŀ  | Н  |    | $G_2$ |  |
|--------|-------|----|----|----|----|-------|--|
|        | g     | и  | g  | и  | g  | и     |  |
| Total  | 55    | 55 | 90 | 90 | 35 | 35    |  |
| Hybrid | 12    | 12 | 16 | 16 | 4  | 4     |  |
| NR     | 11    | 3  | 19 | 4  | 8  | 1     |  |

 $\equiv_{csu}$ 

|        | G <sub>1</sub> |     | ŀ   | Н   |    | $G_2$ |  |
|--------|----------------|-----|-----|-----|----|-------|--|
|        | g              | и   | g   | и   | g  | и     |  |
| Total  | 116            | 116 | 180 | 180 | 68 | 68    |  |
| Hybrid | 24             | 24  | 32  | 32  | 8  | 8     |  |
| NR     | 23             | 6   | 37  | 10  | 15 | 2     |  |

## Lattice parameters

- $N_f = 2 + 1 \text{ QCD}$ 
  - Gauge action: Symanzik-improved
  - Fermion action: Clover-improved Wilson
- Anisotropic:  $a_s = 0.122$  fm,  $a_t = 0.035$  fm

| ensemble         | 1                   | 2                   | 3                  |
|------------------|---------------------|---------------------|--------------------|
| $m_\ell$         | 0840                | 0830                | 0808               |
| $m_s$            | 0743                | 0743                | 0743               |
| Volume           | $16^{3} \times 128$ | $16^{3} \times 128$ | $16^3 \times 128$  |
| Physical volume  | $(2 \text{ fm})^3$  | (2 fm) <sup>3</sup> | $(2 \text{ fm})^3$ |
| $N_{ m cfgs}$    | 344                 | 570                 | 481                |
| $t_{ m sources}$ | 8                   | 5                   | 7                  |
| $m_{\pi}$        | 0.0691(6)           | 0.0797(6)           | 0.0996(6)          |
| $m_K$            | 0.0970(5)           | 0.1032(5)           | 0.1149(6)          |
| $m_{\Omega}$     | 0.2951(22)          | 0.3040(8)           | 0.3200(7)          |
| $m_{\pi}$ (MeV)  | 396                 | 444                 | 524                |

### **Rotational Invariance in Spectrum**

If there is rotational invariance there will be no overlap (coupling) between different J, that is the matrix  $C \propto \delta_{J.J'}$ 

Approximate block-diagonality has been observed



## **Triply charmed baryons**



# How heavy is charm? Can NRQCD still work?



Padmanath et al, HSC: PRD90, 074504(2014)

# **Energy Splittings and their quark mass dependence**

Consider the splittings :

$$m_{\Delta_{uuu}}-\frac{3}{2}~m_{\omega_{\bar{u}u}},~m_{\Omega_{sss}}-\frac{3}{2}~m_{\phi_{\bar{s}s}},~m_{\Omega_{ccc}}-\frac{3}{2}~m_{J/\psi_{\bar{c}c}}~{\rm and}~m_{\Omega_{bbb}}-\frac{3}{2}~m_{\Upsilon_{\bar{b}b}}.$$

- Valence heavy quark content subtracted by the factor 3/2.
   Mimics the binding energy.
- Heavy Quark Effective Theory (HQET) : Mass of a heavy hadron,  $m_{H_{n,Q}} = n \ m_Q + A + B/m_Q + O(1/m_Q^2).$
- Splittings :  $\Delta m \sim a_1 + b_1/m_Q + O(1/m_Q^2) \sim a + b/m_{PS} + O(1/m_{PS}^2)$ .
- Light quark data excluded from the fits.

## Fits with HQET $(a + b/m_{PS})$ : triple flavored baryons





Padmanath et al, HSC: 1311.4354





## $\Xi_{cc}(ccu) - D(cu)$ and $\Omega_{cc}(ccs) - D_s(cs)$









Consider the energy splittings

$$(\Xi_{cc}^* - D, \Omega_{cc}^* - D_s, \Omega_{ccc}^* - \eta_c \text{ and } \Omega_{ccb}^* - B_c),$$
  
 $(\Xi_{cc}^* - D^*, \Omega_{cc}^* - D_s^*, \Omega_{ccc}^* - J/\psi \text{ and } \Omega_{ccb}^* - B_c^*)$ 

• Extrapolation of the fit to these splittings  $\rightarrow m_{B_c^*} - m_{B_c}$ .

$$m_{B_c^*} - m_{B_c} = 80 \pm 8 \ MeV$$
  
 $m_{\Omega_{ccb}^*} = 8050 \pm 10 \ MeV$ 

**53(7), PRL104 (2010) 022001 54(3) PRD86 (2012) 094510 HPQCD**8037(9)(20), Brown et al
1409.0497

## **Singly Charm baryons**



Padmanath et al, HSC: 1311.4806

## **Singly Charm baryons**



Padmanath et al, HSC: 1311.4806

## **Singly Charm baryons**



Padmanath et al, HSC: arXiv 1410.8791

### Need to do

- > Chiral extrapolation (more quark masses)
- Continuum extrapolation (more lattice spacings)
- > Infinite volume extrapolation (more volumes)
- > Include multi-particle interpolating fields
- > Study resonance parameters
- > Similar study for bottom baryons

Possible to do these with adequate computational and human resources

#### Conclusion

- A comprehensive Lattice QCD study of the energy spectra of charm baryons is quite necessary.
- ➤ Results from a recent lattice calculation on the excited state spectra of singly, doubly and triply charmed baryons, up to spin 7/2 and with both parities, are reported here.
- The extracted low-lying spectra closely resemble the expectation from models with an SU(6) X O(3) symmetry.
- This calculation needs to be repeated with better systematics to get a quantitative prediction of excited state spectra of charm baryons.



#### Charm baryons : Nomenclature



We have one heavy and 2+1 light flavor states.

|                                                                                                                                               |                                                         |                                            |    | $20_M$                                                                                                                    |                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               | I                                                       | $I_z$                                      | S  | $\mathcal{F}_{MS}$                                                                                                        | $\mathcal{F}_{MA}$                                                                                                        |
| $\Lambda_c^+$                                                                                                                                 | 0                                                       | 0                                          | 0  | $\frac{1}{\sqrt{2}}( cud\rangle_{MS} -  udc\rangle_{MS})$                                                                 | $\frac{1}{\sqrt{2}}( cud\rangle_{MA} -  udc\rangle_{MA})$                                                                 |
| $\Sigma_c^{++}$                                                                                                                               | 1                                                       | +1                                         | 0  | $ uuc\rangle_{MS}$                                                                                                        | $ uuc\rangle_{MA}$                                                                                                        |
| $\Sigma_c^+$                                                                                                                                  | 1                                                       | 0                                          | 0  | $ ucd\rangle_{MS}$                                                                                                        | $ ucd\rangle_{MA}$                                                                                                        |
| $\Sigma_c^0$                                                                                                                                  | 1                                                       | -1                                         | 0  | $ ddc\rangle_{MS}$                                                                                                        | $ ddc\rangle_{MA}$                                                                                                        |
| $ \begin{array}{c} \Lambda_c^+ \\ \Sigma_c^{++} \\ \Sigma_c^0 \\ \Xi_c^{'+} \\ \Xi_c^{'0} \\ \Xi_c^{+} \\ \Xi_c^0 \\ \Omega_c^0 \end{array} $ | $\frac{1}{2}$                                           | $+\frac{1}{2}$                             | -1 | $ ucs\rangle_{MS}$                                                                                                        | $ ucs\rangle_{MA}$                                                                                                        |
| $\Xi_c^{\prime_0}$                                                                                                                            | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ | $-\frac{1}{2}$                             | -1 | $ dcs\rangle_{MS}$                                                                                                        | $ dcs\rangle_{MA}$                                                                                                        |
| $\Xi_c^+$                                                                                                                                     | $\frac{\overline{1}}{2}$                                | $+\frac{1}{2}$                             | -1 | $\frac{1}{\sqrt{2}}( cus\rangle_{MS} -  usc\rangle_{MS})$                                                                 | $\frac{1}{\sqrt{2}}( cus\rangle_{MA} -  usc\rangle_{MA})$                                                                 |
| $\Xi_c^0$                                                                                                                                     | $\frac{1}{2}$                                           | $-\frac{1}{2} + \frac{1}{2} - \frac{1}{2}$ | -1 | $\frac{\frac{1}{\sqrt{2}}( cus\rangle_{MS} -  usc\rangle_{MS})}{\frac{1}{\sqrt{2}}( cds\rangle_{MS} -  dsc\rangle_{MS})}$ | $\frac{\frac{1}{\sqrt{2}}( cus\rangle_{MA} -  usc\rangle_{MA})}{\frac{1}{\sqrt{2}}( cds\rangle_{MA} -  dsc\rangle_{MA})}$ |
| $\Omega_c^0$                                                                                                                                  | 0                                                       | 0                                          | -2 | $ scs angle_{MS}$                                                                                                         | $ scs\rangle_{MA}$                                                                                                        |
| $\Xi_{cc}^{++}$                                                                                                                               | $\frac{1}{2}$                                           | $+\frac{1}{2}$                             | 0  | $ ccu\rangle_{MS}$                                                                                                        | $ ccu\rangle_{MA}$                                                                                                        |
| $\Xi_{cc}^{++}$ $\Xi_{cc}^{+}$ $\Omega_{cc}^{+}$                                                                                              | $\frac{1}{2}$ $\frac{1}{2}$                             | $+\frac{1}{2} \\ -\frac{1}{2}$             | 0  | $ ccd\rangle_{MS}$                                                                                                        | $ ccd\rangle_{MA}$                                                                                                        |
| $\Omega_{cc}^{+}$                                                                                                                             | Ō                                                       | 0                                          | -1 | $ ccs\rangle_{MS}$                                                                                                        | $ ccs\rangle_{MA}$                                                                                                        |

| $20_S$                                                                               |                                   |                                     |    |                 |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|----|-----------------|--|--|--|--|
|                                                                                      | I                                 | $I_z$                               | S  | $\mathcal{F}_S$ |  |  |  |  |
| $\Sigma_c^{++}$                                                                      | 1                                 | +1                                  | 0  | $ uuc\rangle_S$ |  |  |  |  |
| $\Sigma_c^+$                                                                         | 1                                 | O                                   | O  | $ ucd\rangle_S$ |  |  |  |  |
| $\Sigma_c^0$                                                                         | 1                                 | -1                                  | O  | $ ddc\rangle_S$ |  |  |  |  |
| $\Xi_c^+$                                                                            | $\frac{1}{2}$                     | $+\frac{1}{2}$                      | -1 | $ ucs\rangle_S$ |  |  |  |  |
| $\Xi_c^0$                                                                            | $\frac{\frac{1}{2}}{\frac{1}{2}}$ | $+\frac{1}{2} \\ -\frac{1}{2} \\ 0$ | -1 | $ dcs\rangle_S$ |  |  |  |  |
| $\Sigma_c^{++}$ $\Sigma_c^{+}$ $\Sigma_c^{0}$ $\Xi_c^{0}$ $\Xi_c^{0}$ $\Omega_c^{0}$ | Õ                                 |                                     | -2 | $ ssc\rangle_S$ |  |  |  |  |
| $\Xi_{cc}^{++}$                                                                      | $\frac{1}{2}$                     | $+\frac{1}{2}$ $-\frac{1}{2}$ 0     | 0  | $ ccu\rangle_S$ |  |  |  |  |
| $\Xi_{cc}^{+}$                                                                       | $\frac{\frac{1}{2}}{\frac{1}{2}}$ | $-\frac{1}{2}$                      | O  | $ ccd\rangle_S$ |  |  |  |  |
| $\Xi_{cc}^{++}$ $\Xi_{cc}^{+}$ $\Omega_{cc}^{+}$                                     | Ō                                 | Ō                                   | -1 | $ ccs\rangle_S$ |  |  |  |  |
| $\Omega_{ccc}^{++}$                                                                  | O                                 | 0                                   | 0  | $ ccc\rangle_S$ |  |  |  |  |

| $4_A$         |                          |                |    |                                 |  |  |  |
|---------------|--------------------------|----------------|----|---------------------------------|--|--|--|
|               | I                        | $I_z$          | S  | $\phi_A$                        |  |  |  |
| $\Lambda_c^+$ | 0                        | 0              | 0  | $ udc\rangle_A$                 |  |  |  |
| $\Xi_c^+$     | $\frac{1}{2}$            | $+\frac{1}{2}$ | -1 | $ ucs\rangle_A$                 |  |  |  |
| $\Xi_c^0$     | $\frac{\overline{1}}{2}$ | $-\frac{1}{2}$ | -1 | $ ucs\rangle_A \  dcs\rangle_A$ |  |  |  |