

Critical insights into the near-threshold structures & production of the X(3872) and its partners

Feng-Kun Guo

Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

The 10th International Workshop on Heavy Quarkonium

10-14 Nov. 2014, CERN

Based on:

FKG, C. Hanhart, O. Wang, O. Zhao, arXiv:1411.wxyz

FKG, U.-G. Meißner, W. Wang, Commun. Theor. Phys. 61 (2014) 354 [arXiv:1308.0193]

FKG, U.-G. Meißner, W. Wang, Z. Yang, Eur.Phys.J.C **74** (2014) 3063 [arXiv:1402.6236]

Near-threshold prominent structures

Two types of interpretations

- Poles in the S-matrix: tetraquarks, hadronic molecules, ...
- Cusp effects due to kinematical effect
- Can we distinguish them?
- There is always a cusp at the S-wave threshold, what does the strength of the cusp tell us?
 - well-known example of the cusp in $K^\pm \to \pi^\pm \pi^0 \pi^0$
 - the strength of the cusp is determined by the interaction strength

Meißner, Müller, Steininger (1997); Cabibbo (2004); Colangelo, Gasser, Kubis, Rusetsky (2006); ...

Two types of interpretations

- ullet Poles in the S-matrix: tetraquarks, hadronic molecules, ...
- Cusp effects due to kinematical effect
- Can we distinguish them?
- There is always a cusp at the S-wave threshold, what does the strength of the cusp tell us?
 - well-known example of the cusp in $K^\pm \to \pi^\pm \pi^0 \pi^0$
 - the strength of the cusp is determined by the interaction strength!

Meißner, Müller, Steininger (1997); Cabibbo (2004); Colangelo, Gasser, Kubis, Rusetsky (2006); ...

- Logic:
 first, fit to data with the one-loop expression which contains a cusp;
 then, try to understand the implications of the resulting values of the parameters
- Example: $Y(4260) \to D\bar{D}^*\pi$: $\mathcal{A}_{\text{1-loop}} = g_Y \left[1 C G(\Lambda) \right]$

regularize the loop with a Gaussian form factor with a cutoff Λ three parameters: g_Y , C, Λ

- If we use $g_Y [1 CG(\Lambda)]$ as the full amplitude, this means we have implicitly assumed that the $D\bar{D}^*$ interaction is perturbative
- The two-loop contribution is large \Rightarrow nonperturbative Resumming all the bubbles by $\frac{g_Y}{1+C\,G(\Lambda)}$

with the parameters determined from the 1-loop fit gives a bound state pole very close to the threshold

- If we use $g_Y [1 CG(\Lambda)]$ as the full amplitude, this means we have implicitly assumed that the $D\bar{D}^*$ interaction is perturbative
- The two-loop contribution is large \Rightarrow nonperturbative Resumming all the bubbles by $\frac{g_Y}{1+C\,G(\Lambda)}$

with the parameters determined from the 1-loop fit gives a bound state pole very close to the threshold

- If we use $g_Y [1 CG(\Lambda)]$ as the full amplitude, this means we have implicitly assumed that the $D\bar{D}^*$ interaction is perturbative
- The two-loop contribution is large ⇒ nonperturbative
 Resumming all the hubbles by

Resumming all the bubbles by
$$\frac{g_Y}{1 + C G(\Lambda)}$$

with the parameters determined from the 1-loop fit gives a bound state pole very close to the threshold

- If we use $g_Y [1 CG(\Lambda)]$ as the full amplitude, this means we have implicitly assumed that the $D\bar{D}^*$ interaction is perturbative
- If we require the interaction to be perturbative, we need $C \, G_{\rm th}(\Lambda) \ll 1$ Black curve: up to 1 loop with $C \, G_{\rm th}(\Lambda) = 1/2$, no pronounced peak any more
- <u>Conclusion</u>: When the cusp is a pronounced peak in the elastic channel as those observed structures, the interaction will be nonperturbative and there will be a pole (bound state, virtual state or resonance).

- If we use $g_Y [1 CG(\Lambda)]$ as the full amplitude, this means we have implicitly assumed that the $D\bar{D}^*$ interaction is perturbative
- If we require the interaction to be perturbative, we need $C \, G_{\rm th}(\Lambda) \ll 1$ Black curve: up to 1 loop with $C \, G_{\rm th}(\Lambda) = 1/2$, no pronounced peak any more
- <u>Conclusion</u>: When the cusp is a pronounced peak in the elastic channel as those observed structures, the interaction will be nonperturbative and there will be a pole (bound state, virtual state or resonance).

Partners of hadronic molecules of heavy hadrons

• Heavy quark symmetry for hadronic molecules:

- see the talk by J. Nieves
- in the heavy quark limit, the interaction potential between heavy hadrons is independent of the spin and flavor of heavy quarks
- heavy hadronic molecules have spin partners, and could have flavor partners
- For spin partners, the mass splitting should be approximately the same as their constituents

Examples of candidates of hadronic molecules:

$$\begin{split} M_{D_{s1}(2460)} - M_{D_{s0}^*(2317)} &\approx M_{D^*} - M_{D} \\ M_{Z_b(10650)} - M_{Z_b(10610)} &\approx M_{B^*} - M_{B} \\ M_{Z_c(4020)} - M_{Z_c(3900)} &\approx M_{D^*} - M_{D} \end{split}$$

Partners of the X(3872)

- Spin partner X_2 :
 - X(3872) [1⁺⁺] should have a spin partner with $J^{PC}=2^{++}$ with

$$M_{X_2} \approx M_{X(3872)} + M_{D^*} - M_D \approx 4012 \,\mathrm{MeV}$$

- main decay channels are OZI allowed but in a D-wave: $D\bar{D}$ and $D\bar{D}^*/\bar{D}D^*$
- Flavor "analogue" X_b :
 - X_b has a much larger binding energy than that of the X(3872)
 - isospin I = 0, and isospin breaking effects should be small:

$$M_B+M_{B^*}-M_{X_b}\gg M_{B^0}-M_{B^\pm}=(0.32\pm0.06)~{
m MeV},$$
 $M_{X_b}-M_{\Upsilon(1S)}-M_{\omega/\rho}\gtrsim300~{
m MeV}$

- $\Rightarrow \mathcal{B}(X_b \to \Upsilon(1S)\pi\pi) \sim 10^{-2}$, better to search for it in $\Upsilon \pi^+ \pi^- \pi^0$, $\Upsilon(nS)\gamma$ and $\chi_{b,I}\pi^+\pi^-$
- its spin partner X_{b2} : $M_{X_{b2}} \approx M_{X_b} + 45$ MeV, $X_{b2} \rightarrow B\bar{B}$ (D-wave

Partners of the X(3872)

- Spin partner X_2 :
 - X(3872) [1⁺⁺] should have a spin partner with $J^{PC}=2^{++}$ with

$$M_{X_2} \approx M_{X(3872)} + M_{D^*} - M_D \approx 4012 \text{ MeV}$$

main decay channels are OZI allowed but in a D-wave:

$$Dar{D}$$
 and $Dar{D}^*/ar{D}D^*$

- Flavor "analogue" X_b :
 - X_b has a much larger binding energy than that of the X(3872)
 - isospin I = 0, and isospin breaking effects should be small:

$$M_B + M_{B^*} - M_{X_b} \gg M_{B^0} - M_{B^\pm} = (0.32 \pm 0.06)~{\rm MeV},$$

$$M_{X_b} - M_{\Upsilon(1S)} - M_{\omega/\rho} \, \gtrsim \, 300~{\rm MeV}$$

$$\Rightarrow \mathcal{B}(X_b \to \Upsilon(1S)\pi\pi) \sim 10^{-2}$$
, better to search for it in $\Upsilon \pi^+ \pi^- \pi^0$, $\Upsilon(nS)\gamma$ and $\gamma_{b,t}\pi^+\pi^-$

its spin partner X_{b2} : $M_{X_{b2}} \approx M_{X_b} + 45$ MeV, $X_{b2} \rightarrow B\bar{B}$ (*D*-wave)

Our assumption for the production of hadronic molecules

- We assume that hadronic molecules are produced through the production of their constituent hadrons
- This means that the FSI between the heavy hadrons is essential

Artoisenet, Braaten, PRD81(2010)114018

Hadronic molecules are poles of the T-matrix

$$T = V + V G V + V G G V + ...$$
around the pole \sim

Production

production of constituent hadrons

production of hadronic molecule

Our assumption for the production of hadronic molecules

- We assume that hadronic molecules are produced through the production of their constituent hadrons
- This means that the FSI between the heavy hadrons is essential

Artoisenet, Braaten, PRD81(2010)114018

Hadronic molecules are poles of the T-matrix

$$T = V + V G V + V G G V + \dots$$
around the pole \sim

• Production:

production of constituent hadrons

production of hadronic molecule

Production of X's and Z's at hadron colliders

- Method: a simple extension of the method in
 Artoisenet, Braaten(2010)
 using Monte Carlo event generators (Pythia and Herwig) to generate heavy
 meson pairs,
 Bignamini et al (2009, 2010); Esposito et al (2013); Artoisenet, Braaten(2010, 2011)
 and incorporate the FSI using nonrelativistic EFT
- This is just an order-of-magnitude estimate
- The results for the X(3872) are consistent with both CDF and CMS
- Predictions for inclusive production cross sections at LHC:
 - for X_b , X_{b2} and Z_b 's: \mathcal{O} (nb)
 - for X_{c2} and Z_c 's: $\mathcal{O}(10 \text{ nb}) \sim \mathcal{O}(10^2 \text{ nb})$

Conclusions

- A pronounced cusp in line shape of the elastic channel would suggest that the interaction is nonperturbative and there will be a pole
- The estimated production cross sections for the X and Z states indicate a large discovery potential at LHC

For
$$Y(4260) \to J/\psi \pi^+ \pi^-$$

• Fit to the data with fixed Λ

For
$$Y(4260) \to J/\psi \pi^+ \pi^-$$

• Fit to the data with free Λ

Cross sections for the production of the X(3872)

Table 1 Integrated cross sections (in units of nb) for $pp/\bar{p} \to X$ (3872) compared with previous theoretical estimates [16, 18] and experimental measurements by CDF [43] and CMS [6]. Results outside (inside) brackets are obtained using Herwig (Pythia). Kinematical cuts used are $p_T > 5$ GeV and |y| < 1.2 at Tevatron and 10 GeV $< p_T < 50$ GeV

and |y|<0.6 at LHC with $\sqrt{s}=7$ TeV. We have converted the experimental data $\sigma(p\bar{p}\to X)\times \mathcal{B}(X(3872)\to J/\psi\pi^+\pi^-)=(3.1\pm0.7)$ nb [43] and $\sigma(pp\to X)\times \mathcal{B}(X(3872)\to J/\psi\pi^+\pi^-)=(1.06\pm0.11\pm0.15)$ nb [6] into cross sections using $\mathcal{B}(X(3872)\to J/\psi\pi^+\pi^-)\in[0.027,0.083]$ as discussed in the text

$\sigma(pp/p\bar{p} \to X(3872))$	Reference [16]	Reference [18]	$\Lambda=0.5~\text{GeV}$	$\Lambda=1~\text{GeV}$	Experiment
Tevatron	< 0.085	1.5-23	10 (7)	47 (33)	37–115 [43]
LHC7	-	45–100 ^a	16 (7)	72 (32)	13–39 [6]

a Estimate based on non-relativistic QCD

Refs.:

[6] CMS, JHEP1304(2013)154

[16] C. Bignamini et al, PRL103(2009)162001

[18] P. Artoisenet, E. Braaten, PRD81(2010)114018

[43] CDF, IJMPA20(2005)3765

Results for the production of the X_b

Table 2 Integrated cross sections (in units of nb) for the $pp/\bar{p} \to X_b$, and $pp/\bar{p} \to X_{b2}$ at the LHC and Tevatron. Results out of (in) brackets are obtained using Herwig (Pythia). The rapidity range |y| < 2.5 has been assumed for the LHC experiments (ATLAS and CMS) at 7, 8 and 14 TeV; for the Tevatron experiments (CDF and D0) at 1.96 TeV, we use |y| < 0.6; the rapidity range 2.0 < y < 4.5 is used for the LHCb

X_b	$E_{X_b} = 24 \text{ MeV}$ $(\Lambda = 0.5 \text{ GeV})$	$E_{X_b} = 66 \text{ MeV}$ ($\Lambda = 1 \text{ GeV}$)
Tevatron	0.08 (0.18)	0.61 (1.4)
LHC 7	1.5 (3.1)	12 (23)
LHCb 7	0.25 (0.49)	1.9 (3.7)
LHC 8	1.8 (3.6)	14 (27)
LHCb 8	0.3 (0.62)	2.2 (4.7)
LHC 14	3.2 (6.8)	24 (51)
LHCb 14	0.65 (1.3)	4.9 (9.7)

Results for the production of the X_{b2} and X_{c2}

X_{b2}	$E_{X_{b2}} = 24 \text{ MeV}$ $(\Lambda = 0.5 \text{ GeV})$	$E_{X_{b2}} = 66 \text{ MeV}$ $(\Lambda = 1 \text{ GeV})$
Tevatron	0.05 (0.13)	0.36 (1.0)
LHC 7	0.92 (2.3)	6.9 (17)
LHCb 7	0.14 (0.36)	1.1 (2.7)
LHC 8	1.1 (2.7)	8.1 (20)
LHCb 8	0.19 (0.46)	1.4 (3.5)
LHC 14	1.9 (5.0)	15 (37)
LHCb 14	0.38 (0.96)	2.9 (7.2)
$\overline{X_{c2}}$	$E_{X_{c2}} = 4.8 \text{ MeV}$	$E_{X_{c2}} = 5.6 \text{MeV}$
02	$(\Lambda = 0.5 \text{ GeV})$	$(\Lambda = 1 \text{ GeV})$
Tevatron		
	$(\Lambda = 0.5 \text{ GeV})$	$(\Lambda = 1 \text{ GeV})$
Tevatron	$(\Lambda = 0.5 \text{ GeV})$ 4.4 (3.0)	$(\Lambda = 1 \text{ GeV})$ $22 (15)$
Tevatron LHC 7	$(\Lambda = 0.5 \text{ GeV})$ 4.4 (3.0) 66 (44)	$(\Lambda = 1 \text{ GeV})$ 22 (15) 327 (216)
Tevatron LHC 7 LHCb 7	($\Lambda = 0.5 \text{ GeV}$) 4.4 (3.0) 66 (44) 14 (8.5)	$(\Lambda = 1 \text{ GeV})$ 22 (15) 327 (216) 71 (42)
Tevatron LHC 7 LHCb 7 LHC 8	$(\Lambda = 0.5 \text{ GeV})$ 4.4 (3.0) 66 (44) 14 (8.5) 74 (52)	$(\Lambda = 1 \text{ GeV})$ 22 (15) 327 (216) 71 (42) 369 (256)

Updated results for the production of the Z_{c} states

$Z_{c(3900)}$	$E_{Z_{c(3900)}} = 5. \text{ MeV}(\Lambda = 0.5 \text{ GeV})$	$E_{Z_{c(3900)}} = 39 \text{ MeV}(\Lambda = 1 \text{ GeV})$
Tevatron	4.5(5.6)	59(74)
LHC 7	77(88)	1028(1162)
LHCb 7	14(16)	182(216)
LHC 8	91(100)	1209(1321)
LHCb 8	17(20)	221(264)
LHC 14	158(175)	2102(2326)
LHCb 14	35(37)	462(486)
$Z_{c(4020)}$	$E_{Z_{c(4020)}} = 4.2 \text{ MeV}(\Lambda = 0.5 \text{ GeV})$	$E_{Z_{c(4020)}} = 34 \text{ MeV}(\Lambda = 1 \text{ GeV})$
Tevatron	3.4(3.9)	46(53)
LHC 7	57(61)	777(831)
LHCb 7	11(11)	145(153)
LHC 8	67(70)	906(953)
LHCb 8	12(13)	168(183)
LHC 14	120(122)	1626(1656)
LHCb 14	26(27)	358(363)
Feng-Kun Guo (UniBonn) Cusp or not & production of the X and Z states 11.2014		

Updated results for the production of the \mathcal{Z}_b states

$Z_{b(10610)}$	$E_{Z_{b(10610)}} = 2. \text{ MeV}(\Lambda = 0.5 \text{ GeV})$	$E_{Z_{b(10610)}} = 2. \text{ MeV}(\Lambda = 1 \text{ GeV})$
Tevatron	0.05(0.09)	0.24(0.43)
LHC 7	0.94(1.6)	4.4(7.3)
LHCb 7	0.15(0.24)	0.7(1.1)
LHC 8	1.1(1.8)	5.4(8.7)
LHCb 8	0.18(0.28)	0.84(1.3)
LHC 14	2.1(3.4)	10(16)
LHCb 14	0.38(0.59)	1.8(2.8)
$Z_{b(10650)}$	$E_{Z_{b(10650)}} = 2. \text{ MeV}(\Lambda = 0.5 \text{ GeV})$	$E_{Z_{b(10650)}} = 2.1 \text{ MeV}(\Lambda = 1 \text{ GeV})$
Tevatron	0.02(0.07)	0.11(0.32)
LHC 7	0.45(1.2)	2.1(5.5)
LHCb 7	0.07(0.18)	0.34(0.87)
LHC 8	0.54(1.4)	2.6(6.6)
LHCb 8	0.09(0.22)	0.41(1.)
LHC 14	1.(2.5)	4.9(12)