EXOTIC Spectroscopy at LHCb

Marco Pappagallo
On behalf of the LHCb collaboration

970 University of Glasgow

Quarkonium 2014, CERN, Geneva, Switzerland 10 November 2014

OUTLINE

\rightarrow LHCb detector
$>X(3872)$
\checkmark Spin-Parity
\checkmark Radiative decays
$>X(4140)$
$>Z(4430)^{+}$
\checkmark Model independent analysis
\checkmark Amplitude analysis

THE LHCb DETECTOR

JINST 3 (2008) S08005

X(3872)

The X(3872) Meson

Discovered in 2003 by the Belle collaboration in the $B \rightarrow K X(3872)$ decay where $X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}$
\circledast Mass is roughly equal to $m\left(D^{0}\right)+m\left(D^{* 0}\right)$
\circledast Width is surprisingly narrow $(<1.2 \mathrm{MeV})$
\circledast Large production rate in $p \bar{p}$ collisions

LHCb is largely contributing to shed light on the nature of the X(3872) state:
Determination of the quantum numbers [PRL 110, 222001 (2013)]
$>$ Measurement of $B(\mathrm{X}(3872) \rightarrow \psi(2 \mathrm{~S}) \gamma) / B(\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma)$ [Nucl.Phys.B886 (2014) 665]
$>$ Precise mass measurement [EPJC 72 (2012) 1972] [JHEP 06 (2013) 065]

$$
E_{B}=m\left(D^{0} \bar{D}^{* 0}\right)-m(X(3872))=0.09 \pm 0.28 \mathrm{MeV} / \mathrm{c}^{2} \longrightarrow \begin{gathered}
\text { Loosely bound in the } \\
\text { molecule scenario }
\end{gathered}
$$

$>$ Production cross-section in $p p$ collisions at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ [EPJC 72 (2012) 1972]

$$
\sigma_{X(3872)} \times B R\left(X(3972) \rightarrow J / \psi \pi^{+} \pi^{-}\right)^{\left[2.5<y<4.5, p_{T}>5 \mathrm{GeV}\right]}=5.4 \pm 1.3 \pm 0.8 \mathrm{nb}
$$

$>$ Search for $\mathrm{X}(3872) \rightarrow p \bar{p}$ [EPJC 73 (2013) 2462]
$\frac{B R(X(3872) \rightarrow p \bar{p})}{B R\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}<2.0 \times 10^{-3}$

X(3872) Quantum Numbers

[PRL 110, 222001 (2013)]
Previously:
$\circledast B$ factories: Observation of the $X(3872) \rightarrow J / \psi \gamma$ decay $\Rightarrow \mathbf{C}=+$. [PRL 102 132001] [PRL 107091803]
\circledast CDF: $2292 \pm 113 p \bar{p} \rightarrow X(3872)+$ anything events. Unknown $\mathrm{X}(3872)$ polarization (only 3 angles). Quantum numbers constrained to 1^{++}or 2^{-+}. [PRL 98, 132002 (2007)]
\circledast Belle: $173 \pm 16 B \rightarrow K X(3872)$ events. 1D analysis carried out (Not enough events to bin in 5D). 1^{++}or 2^{-+}could not be distinguished. [hep-ex/0505038]

* $1.0 \mathrm{fb}^{-1}$ dataset collected by LHCb in 2011
$\circledast 313 \pm 26 B^{+} \rightarrow K^{+} X(3872)$ with $X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}$
\circledast LHCb performs a 5 D analysis which benefits of the angular correlations to disentangle the quantum number of the $\mathrm{X}(3872)$

X(3872) Quantum Numbers: $\mathrm{J}^{\mathrm{P}}=\mathbf{1}^{++}$!

* Likelihood-ratio test to discriminate between the 1^{++} and the 2^{-+}assignments
$*$ Simulated experiments, each with the number of signals and background events as in the real experiment
\circledast The two spin hypotheses are completely separated
$\circledast \mathrm{t}>0$ implies 1^{++}favoured
$\circledast \mathrm{t}<0$ implies 2^{-+}favoured
Data favour the 1^{++}over the 2^{-+}hypothesis at 8.4σ

$\circledast \eta_{c 2}\left(1^{1} D_{2}\right)\left(J^{P C}=2^{-+}\right)$ruled out
$\circledast \chi_{c 1}\left(2^{3} P_{1}\right)$ disfavoured by the measured mass
$*$ Conventional charmonium interpretation of the $\mathrm{X}(3872)$ seems fading in favour of an exotic scenario!

Evidence for X(3872) $\rightarrow \psi(2 S) \gamma$

[Nucl.Phys.B886 (2014) 665]
\circledast Observation of the $X(3872) \rightarrow J / \psi \gamma$ decay $\Rightarrow \mathrm{C}=+[$ PRL 102 132001] [PRL 107 091803]
\circledast Measurement of $R_{\psi \gamma} \equiv \frac{\mathcal{B}(X(3872) \rightarrow \psi(2 S) \gamma)}{\mathcal{B}(X(3872) \rightarrow J \psi \gamma)}$ to disentangle the nature of $X(3872)$
$*$ Predicitions of $R_{\psi \gamma}$ vary widely across different models:
$\rightarrow \chi_{c 1}\left(2^{3} P_{1}\right)$ interpretation: $R_{\psi \gamma} \sim 1.2-15$
$\rightarrow D \bar{D}^{*}$ molecular picture: $R_{\psi \gamma} \sim(3-4) \times 10^{-3}$
\rightarrow Mixture of $c \bar{c}$ and $D \bar{D}^{*}: R_{\psi \gamma} \sim 0.5-5$

Controversial experimental status:
$>$ In 2009 BaBar: Evidence of $\mathrm{X}(3872) \rightarrow \Psi(2 \mathrm{~S}) \gamma$ in $\mathrm{B}^{ \pm} \rightarrow \mathrm{X}(3872) \mathrm{K}^{ \pm}$decays:

$$
R_{\Psi \gamma}=3.4 \pm 1.4 \quad[P R L 102 \text { (2009) 132001] }
$$

$>$ In 2011 Belle: No evidence for $\mathrm{X}(3872) \rightarrow \psi(2 \mathrm{~S}) \gamma$:

$$
\mathrm{R}_{\Psi \gamma}<1.2 @ 90 \text { C.L.[PRL107 (2011) 091803] }
$$

Evidence for X(3872) $\rightarrow \psi(2 S) \gamma$

[Nucl.Phys.B886 (2014) 665]
$>$ Integrated luminosity $3.0 \mathrm{fb}^{-1}$
$>$ Reconstruction of $\mathrm{B}^{+} \rightarrow \psi(\rightarrow \mu \mu) \gamma \mathrm{K}^{+}$, where $\psi=J / \Psi$ or $\psi(2 S)$
$>\pi^{0}$ veto
$>\mathrm{m}(\Psi \gamma) \in[3.7-4] \mathrm{GeV} / \mathrm{c}^{2}$
$>\Psi$ mass and PV constrained to improve
mass resolution

Evidence for X(3872) $\rightarrow \psi(2 S) \gamma$

$>$ 2D Fit: $\mathrm{m}(\psi \gamma \mathrm{K})$ vs $\mathrm{m}(\psi \gamma)$
> Peaking backgrounds:
$>\mathrm{J} / \psi$ mode: $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{*+}, \mathrm{K}^{*+} \rightarrow \mathrm{K}^{+} \Pi^{0}(\rightarrow \gamma /()$
$>\psi(2 \mathrm{~S})$ mode: $\mathrm{b} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+} \mathrm{h}+$ random γ

 Bkg.

Evidence for X(3872) $\rightarrow \psi(2 S) \gamma$

[Nucl.Phys.B886 (2014) 665]

$$
R_{\psi \gamma} \equiv \frac{\mathcal{B}(X(3872) \rightarrow \psi(2 S) \gamma)}{\mathcal{B}(X(3872) \rightarrow J \psi \gamma)}=2.46 \pm 0.64 \pm 0.29
$$

Does not support a pure DD* molecular interpretation. Standard charmonium and other scenarios still compatible

Can the radiative decays tell us more?
[F.Guo, C. Hanhart et al., arXiv:1410.6712]

$X(4140) \& X(4270)$

A BIT OF HISTORY

CDF: Evidence/"Observation" in $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \phi \mathrm{K}^{+}$ [PRL 102, 242002 (2009), arXiv: 1101.6058]
$\mathrm{X}(4140)$
$\mathrm{m}=4143.0^{+2.9}{ }_{-3.0} \pm 0.6 \mathrm{MeV}$
$\Gamma=15.3^{+10.4}-6.1 \pm 2.5 \mathrm{MeV}$

X(4274)
$\mathrm{m}=4274.4^{+8.4}{ }_{-6.7} \pm 1.9 \mathrm{MeV}$
$\Gamma=32.3^{+21.9}{ }_{-15.3} \pm 7.6 \mathrm{MeV}$

Charmonium states with $\mathrm{m}_{\mathrm{X}} \gg \mathrm{D}_{(\mathrm{s})}{ }^{(*)} \mathrm{D}_{(\mathrm{s})}{ }^{(*)}$ should decay easily into D mesons. The narrow widths hint that their nature is different: meson-meson, hybrid, tetraquark ...

Belle: No evidence of $\mathrm{X}(4140)$ in $\gamma \gamma \rightarrow \mathrm{J} / \Psi \phi$. Observation of a new state X(4350) [PRL 104, 112004 (2010)]
> D0: "Threshold enhancement consistent with the X(4140) (3.1 σ) ...Second structure consistent with X(4350)" [PRD89 012004 (2014)]
$>$ CMS: Peak in $\mathrm{J} \psi \phi$ consistent with $\mathrm{X}(4140)$. Evidence of a $2^{\text {nd }}$ peak affected by reflections [PLB 734 (2014) 261]
$>$ BaBar: No evidence of X(4140)/X(4274) [arXiv: 1407.7244]

13

SEARCH FOR X(4140)/X(4270) AT LHCb

* According to the CDF results, $35 \pm 11 \mathrm{X}(4140)$ signal candidates and $53 \pm 19 \mathrm{X}(4274)$ signal candidates expected
* No narrow structure is observed near the threshold * The LHCb results disagree at 2.4σ level with the CDF measurement

$$
\begin{gathered}
\text { LHCb(90\%) C.L. } \\
\frac{\mathcal{B}\left(B^{+} \rightarrow X(4140) K^{+}\right) \times \mathcal{B}(X(4140) \rightarrow J / \psi \phi)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi \phi K^{+}\right)}<0.07 . \\
\frac{\mathcal{B}\left(B^{+} \rightarrow X(4274) K^{+}\right) \times \mathcal{B}(X(4274) \rightarrow J / \psi \phi)}{\mathcal{B}\left(B^{+} \rightarrow J / \psi \phi K^{+}\right)}<0.08 \\
\hline
\end{gathered}
$$

An amplitude analysis needed to investigate the resonance nature of these peaks
[LHCb, PRD 85, 091103(R) (2012)]

$Z(4430)^{+}$

Z(4430) ${ }^{+}$

Observed in the $\psi(2 S) \pi^{+}$in $B^{0(+)} \rightarrow \psi(2 S) \pi^{+} K^{-(0)}$ decays by Belle
[Belle, PRL100, 142001 (2008)]
$*$ Clear signature of exotic:
Decay to charmonium $\rightarrow c \bar{c}$ pair content
Electric charged \rightarrow at least 2 more light quarks $N_{\text {quarks }}>=4$!
Tetraquark, $D^{*} D_{1}$ molecule?
\circledast Later 2D "Dalitz" technique: $M^{2}\left(\psi(2 S) \pi^{+}\right)$vs $M^{2}\left(K^{-} \pi^{+}\right)$[Belle, PRD 80, 031104 (R) (2009)]
$\circledast Z(4430)^{+}$not confirmed (nor excluded) by BaBar: Investigation the extent to which reflection of the $K \pi$ mass and angular structures are able to reproduce the $\psi(2 S) \pi$ mass distributions \quad [BaBar, PRD 79, 112001 (2009)]
\circledast Belle presented results of a full 4D amplitude analysis. $J^{P}=1^{+}$favoured but $J^{P}=0^{-}$not excluded
[Belle, PRD 88 (2013) 074026]

M. Pappagallo

Confirmation of Z(4430) ${ }^{+}$

[PRL 112, 222002 (2014)]
> Integrated luminosity of $3.0 \mathrm{fb}^{-1}$
$>$ Sample of $>25 \mathrm{k} \mathrm{B}^{0} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}^{+} \Pi^{-}$candidates (x10 Belle/BaBar)
$>$ Backgrounds from mis-ID physics decay is small
> Sidebands are used to build 4D model of the combinatorial background

Model Independent Analysis

[PRL 112, 222002 (2014)]
Can reflection of the structures in $m\left(\mathrm{~K}_{\pi}\right)$ and $\cos \theta$ reproduce the $\mathrm{m}\left(\psi^{\prime}\right.$ п) distribution?
[S.U.Chung, Phys. Rev. D56, 7299(1997)]

$>$ Does not make any assumption on the underlying K^{*} resonances in the system, only restricts their maximal spin ($\mathrm{J} \leq 2$).
$>$ Weight phase space simulated $\mathrm{B}^{0} \rightarrow \psi^{\prime} \mathrm{K}^{+} \Pi^{-}$events with the spherical harmonic moments of $\cos \theta_{\mathrm{K}}$.
$>$ Moments of K^{*} resonances are unable to explain observed distribution

Amplitude Model

Use the Isobar approach:
$>$ Build amplitude from sum of two-body decays:

$$
\mathrm{B}^{0} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}^{*}\left(\rightarrow \Pi^{-} \mathrm{K}+\right) \text { and } \mathrm{B}^{0} \rightarrow \mathrm{Z}(4430)^{-}\left(\rightarrow \psi(2 \mathrm{~S}) \Pi^{-}\right) \mathrm{K}^{+}
$$

$>$ Overlapping and interfering Breit-Wigner resonances.
$>$ Kп sector:
$>$ Default result includes all resonances up to $\mathrm{K}^{*}{ }_{1}(1680)(\mathrm{J} \leq 2)$.
$>$ Kп S-wave: $\mathrm{K} *(800)+\mathrm{K}^{*}(1430)+\mathrm{NR}(L A S S$ as cross-check)
$>\mathrm{K}^{*}$ with $\mathrm{J}>2$ for systematics

Resonance	J^{P}	Likely $n^{2 S+1} L_{J}$	Mass (MeV)	Width (MeV)
$K_{0}^{*}(800)^{0}(\kappa)$	0^{+}	-	682 ± 29	547 ± 24
$K^{*}(892)^{0}$	1^{-}	$1^{3} S_{1}$	895.94 ± 0.262	48.7 ± 0.7
$K_{0}^{*}(1430)^{0}$	0^{+}	$1^{3} P_{0}$	1425 ± 50	270 ± 80
$K_{1}^{*}(1410)^{0}$	1^{-}	$2^{3} S_{1}$	1414 ± 15	232 ± 21
$K_{2}^{*}(1430)^{0}$	2^{+}	$1^{3} P_{2}$	1432.4 ± 1.3	109 ± 5
$B^{0} \rightarrow \psi(2 S) K^{+} \pi^{-}$phase space limit	1593			
$K_{1}^{*}(1680)^{0}$	1^{-}	$1^{3} D_{1}$	1717 ± 27	322 ± 110
$K_{3}^{*}(1780)^{0}$	3^{-}	$1^{3} D_{3}$	1776 ± 7	159 ± 21
$K_{0}^{*}(1950)^{0}$	0^{+}	$2^{3} P_{0}$	1945 ± 22	201 ± 78
$K_{4}^{*}(2045)^{0}$	4^{+}	$1^{3} F_{4}$	2045 ± 9	198 ± 30
$B^{0} \rightarrow J / \psi K^{+} \pi^{-}$phase space limit	2183			
$K_{5}^{*}(2380)^{0}$	5^{-}	$1^{3} G_{5}$	2382 ± 9	178 ± 32

Projections of 4D Amplitude Fit without Z(4430)+

[PRL 112, 222002 (2014)]

$>$ Determine goodness-of-fit from 4D X^{2}.
$>$ The $\mathrm{X}^{2} \mathrm{p}$-value $<2 \times 10^{-6}$.
$>$ The data cannot be adequately described only using $\mathrm{J} \leq 3 \mathrm{~K}^{*}$ contributions.

Projections of 4D Amplitude Fit WITH Z(4430) ${ }^{+}$

[PRL 112, 222002 (2014)]
Everything except the $\mathrm{Z} \rightarrow$ large interference between Z and K п sector

$$
\mathrm{J}^{\mathrm{P}}=1^{+}
$$

Z component

> The $4 \mathrm{D} \mathrm{x}^{2} \mathrm{p}$-value $=12 \%$.
$>$ The data are well described when including a $\mathrm{J}^{\mathrm{P}}=1^{+} \mathrm{Z}(4430)$ in the fit

Z(4430)+ Parameters from Amplitude Fit

[PRL 112, 222002 (2014)]
Amplitude fractions [\%]

	LHCb	Belle	Contribution	LHCb	Belle
$M(Z)[\mathrm{MeV}]$	$4475 \pm 7_{-25}^{+15}$	$4485 \pm 22_{-11}^{+28}$	S-wave total	10.8 ± 1.3	
$\Gamma(Z)[\mathrm{MeV}]$	$172 \pm 13_{-34}^{+37}$	200_{-46-35}^{+41+26}	NR	0.3 ± 0.8	
			$K_{0}^{*}(800)$	3.2 ± 2.2	5.8 ± 2.1
$f_{Z}[\%]$	$5.9 \pm 0.9_{-3.3}^{+1.5}$	$10.3_{-3.5-2.3}^{+3.0+4.3}$	$K_{0}^{*}(1430)$	3.6 ± 1.1	1.1 ± 1.4
$\underset{\text { (with interference) }}{f_{\text {In }}^{\prime}}[\%]$	$16.7 \pm 1.6_{-5.2}^{+2.6}$	-	$K^{*}(892)$	59.1 ± 0.9	63.8 ± 2.6
significance	$>13.9 \sigma$	$>5.2 \sigma$	$K_{2}^{*}(1430)$	7.0 ± 0.4	4.5 ± 1.0
J^{P}	1^{+}	1^{+}	$K_{1}^{*}(1410)$	1.7 ± 0.8	4.3 ± 2.3
	New (large)		$K_{1}^{*}(1680)$	4.0 ± 1.5	4.4 ± 1.9
	systematic included		$Z(4430)^{-}$	5.9 ± 0.9	$10.3_{-3.5}^{+3.0}$

Very good agreement between $\mathrm{LHCb} /$ Belle results

RESONANT BEHAVIOUR - A BOUND STATE?

[PRL 112, 222002 (2014)]
Replace BW amplitude with 6 independent complex numbers in 6 bins of $\mathrm{m}\left(\psi^{\prime} \Pi\right)$ in region of $\mathrm{Z}(4430)$ mass peak.
> Allows Z(4430) shape to be constrained only by amplitudes in Kn sector.
$>$ Observe rapid change of phase near maximum of magnitude \Rightarrow resonance!

Still room for non-resonant interpretation?
[P.Pakhlov, T.Uglov, arXiv: 1408.5295]

SECOND Exotic Z ${ }^{+}$?

[PRL 112, 222002 (2014)]
Fit confidence level increases with a second exotic ($\mathrm{J}^{\mathrm{P}}=0^{-}$) component, but...
$>$ No evidence for Z_{0} in model independent approach.
$>$ Argand diagram for Z_{0} is inconclusive.
$>$ Need larger samples to characterize this state.

$$
\begin{aligned}
M_{Z_{0}} & =4239 \pm 18_{-10}^{+45} \mathrm{MeV} \\
\Gamma_{Z_{0}} & =220 \pm 47_{-74}^{+108} \mathrm{MeV} \\
f_{Z_{0}} & =\left(1.6 \pm 0.5_{-0.4}^{+1.9}\right) \%
\end{aligned}
$$

Mass and width consistent with other Z's observed by Belle:
$>\mathrm{Z}^{-} \rightarrow \mathrm{X}_{\mathrm{c} 1} \mathrm{~T}^{-} \quad\left(\mathrm{J}^{\mathrm{P}} \neq 0^{-}\right)[$PRD 78 (2008) 072004]

$>\mathrm{Z} \rightarrow \mathrm{J} / \Psi \pi^{-}$[arXiv: 1408.6457]

Conclusion

$X(3872)$
\checkmark Elusive nature despite the world wide efforts
\checkmark Radiative decays ruled out the interpretation of a pure DD^{*} molecule
$>X(4140) / X(4274)$
\checkmark No evidence of such states/structures in $\mathrm{L}=0.36 \mathrm{fb}^{-1}$
\checkmark But much larger dataset on tape
$>Z(4430)^{+}$
$>$ Confirmation of $\mathrm{Z}(4430)^{+}$
$>$ Resonant behaviour shown
$>\mathrm{J}^{\mathrm{P}}=1^{+}$established \rightarrow Disfavor the interpretation as a $\mathrm{D}^{*} \mathrm{D}_{1}$ molecule or cusp. Tetraquark scenario still standing
[Maiani et al, arXiv:1405.1551]
> Amplitude fit model accommodates a $2^{\text {nd }} \mathrm{Z}$ but more studies are required

Conclusion (2)

List of charmonium-like states is getting longer and longer
\checkmark Plan to study them in b-hadron decays because of their broad widths or because they have been observed in such decays
\checkmark Amplitude analyses are time consuming due to presence of vectors in the decays products but needed to establish the resonant character/quantum numbers
\checkmark Excited prospects ahead due to the upcoming data taking! (RUN I + RUN II ~ $10 \mathrm{fb}^{-1}$)

Back Up

X(3872) QuANTUM NUMBERS: $\mathrm{J}^{\mathrm{P}}=\mathbf{1}^{++}$!

* How important are the angular correlations?
\circledast Projections in $\cos \theta_{X}$ for all background-subtracted signal candidates (top) and background-subtracted signal candidates with $\left|\cos \theta_{\pi \pi}\right|>0.6$ (bottom)
$*$ Little discrimination between $J^{P C}=1^{++}($red $)$, $J^{P C}=2^{-+}$(blue) without using correlations.

