Quarkonium production at LHCb

Introduction

- Quarkonia production provides a test of QCD
- Quarkonia production mechanism is still not well understood
- Inclusive production (J/ψ,Y ,χ_{b,c} ,η_c):
 - Test of Higher Order corrections
 - Relative importance of color singlet and color octet contributions
 - Tuning of MC
 - ⇒ understanding of the background for searches for new physics

- Pomeron exchange
- Proble gluon PDF at low x

colour-singlet state

Transition to the

observable state.

Outline

- The LHCb detector and quarkonia
- J/ψ and Y production
- Feeddown from χ_b to Y's
- χ_b production
- η_c production
- Exclusive production of charmonium

The LHCb detector and quarkonia

- Efficient muon trigger: $P_T(\mu_1)x P_T(\mu_2) > 1.68 (GeV/c)^2$
- Very good momentum resolution (0.5%): $\sigma=13$ MeV/c² on J/ ψ
- Impact parameter resolution: $\sigma = 20 \mu m => prompt/secondary$
- Very good muon identification: $\varepsilon \sim 97\%$ for $\sim 1\%$ $\pi \rightarrow \mu$ misid
- Backward coverage of the VELO: important for exclusive production

Rapidity coverage: 2.0<y<4.5

Results based on:

- 1fb⁻¹ at 7TeV (2011 data)
- 2fb⁻¹ at 8TeV (2012 data)

J/ψ production at 8 TeV

- J/ψ production measurement in LHCb:
 - Use J/ψ→μμ decay
 - Low pT muon trigger: 2 muons $p_T > \sim 0.5$ GeV/c
 - $-\pi \rightarrow \mu$ misid $\sim 0.7\%$

- prompt and from-b yields from 2D fit of m(μμ) and t_z
- J/ ψ is assumed to be produced unpolarized as suported by LHCb EPJ.C73(2013)2631, and ALICE PRL108(2012)082001 measurements
- Efficiencies (trigger, μ id, reconstruction) validated using data-driven techniques
- April 2012 (small) data sample used: 18.4±0.9 pb⁻¹

J/ψ production at 8 TeV

Double differential cross-section for pT<15GeV/c and 2.0<y<4.5

 $\sigma^{43}MeV/c^{2}\sqrt{s} = 8 \text{ TeV}$

10000

Y Production at 8 TeV

- Same analysis as for J/ψ (except no from-b)
- Assumption: Y not polarized as suported by CMS measurement (PRL110(2013)081802)
- April 2012 (small) data sample used: 50.6±2.5 pb⁻¹

11000

 $m(\mu^{+}\mu^{-})[MeV/c^{2}]$

Y Production at 8 TeV

 $p_{_{\mathrm{T}}}[\mathrm{GeV}/c]$

Comparison to theory:

- CSM NLO PRL98(2007)252002 underestimates production
- agreement with CSM NNLO* PRL101(2008)152001
- !! Measurement includes feedown not theory !!

Y feed-down from χ_h

• Add a photon to the Y candidates to study the transitions $\chi_h(mP) \rightarrow \gamma Y (nS)$ (pT(γ)>600 MeV/c)

 $m(\chi_b)=m(\mu\mu\gamma)-m(\mu\mu)+m_{PDG}(Y)$: cancellation of the detector resolution on Y invariant mass

 \Rightarrow First observation of $\chi_b(3P) \rightarrow \gamma Y$ (3S)!

 $\lceil \text{GeV}/c^2 \rceil$

LHCb $\sqrt{s} = 8 \text{ TeV}$

Y feed-down from χ_b

Feedown derived from:

$$R_{\mathrm{Y}}^{\chi_b} = rac{N_{\chi_b}}{N_{\mathrm{Y}}} imes rac{\mathcal{E}_{_{\mathrm{Y}}}}{\mathcal{E}_{\chi_b}}$$

- Systematic uncertainties:
 - photon efficiency: 3%
 - Unknown polarisation: 1-9%
 - Modeling of the 2 χ_b spin states (relative rate and mass spliting): up to 20%

 $m_{\Upsilon(3S)\gamma}$

Candidates/ $(10 \text{MeV}/c^2)$

10.5

⇒ Feeddown ~ 30% for all Y's!

In agreement with prediction from NLO NRQCD (arxiv:1410.8537)

Relative production of $\chi_{b,c}$ spin states

- Study the relative production of the 2 spin states $\chi_{b(c)2}(1P)$ and $\chi_{b(c)1}(1P)$
 - ⇒ test color octet and color singlet relative contributions
- Use converted photons in order to separate the 2 states ($\sigma=1.2$ MeV for χ_b)

- $\Rightarrow \chi_b$ and χ_c results in agreement
- ⇒ Ratio of cross-section ~ flat with pT
- ⇒ Increase predicted by LO NRQCD at low pT seems softer

⇒ better agreement with prediction from NLO NRQCD (arxiv:1410:8537)

$\chi_b(3P)$ mass

• Using all radiative transitions $\chi_b(3P) \rightarrow \gamma \ Y(1,2,3S)$ with converted and non-converted photons

arxiv:1409.1408

UIXIV.1407.77

$$\Rightarrow$$
 m ($\chi_{b1}(3P)$) = 10512.1±2.1_{exp}±0.9_{model} MeV/c²

In agreement with ATLAS measurement: $m(\chi_b(3P)) = 10530 \pm 5 \pm 9 \text{ MeV/c}^2 \text{ PRL} 108(2012)152001$ and theoretical prediction: $m(\chi_{b1}(3P)) \sim 10516 \text{ MeV/c}^2$ PRD38(1988)279

η_c production

• Theory: NRQCD predicts different pT dependance for η_c and J/ ψ production (due to spin difference)

LHCb analysis:

- Use common decay of η_c and J/ψ to $p\bar{p}$ and good LHCb particle ID for protons

- $pT(p\bar{p})>6.5GeV/c$

- Clear signal in from-b sample (t_z >80fs) used for parametrizing the prompt signal shapes (t_z <80fs)

+ measurement of η_c natural width and η_c -J/ ψ mass difference

η_c production

• Normalize η_c to J/ ψ using J/ ψ absolute cross-section measurement

 \Rightarrow η_c production cross sections for 2<y<4.5 and p_T > 6.5 GeV/c:

$$\begin{split} \left(\sigma_{\eta_c(1S)}\right)_{\sqrt{s}=7\,\text{TeV}} &= 0.52 \pm 0.09 \pm 0.08 \pm 0.06_{\sigma_{J/\psi},\mathcal{B}} \; \mu b, \\ \left(\sigma_{\eta_c(1S)}\right)_{\sqrt{s}=8\,\text{TeV}} &= 0.59 \pm 0.11 \pm 0.09 \pm 0.08_{\sigma_{J/\psi},\mathcal{B}} \; \mu b, \end{split}$$

⇒Input to theory for estimate of CS/CO contributions (arXiv: 1411.1247)

 \Rightarrow inclusive branching fraction of b-hadrons to $\eta_{
m c}$

$$\mathcal{B}(b \to \eta_c(1S)X) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67_B) \times 10^{-3}$$

Uncertainty from Br($\eta \rightarrow p\bar{p}$), Br($J/\psi \rightarrow p\bar{p}$) and Br($b \rightarrow J/\psi X$)

 \Rightarrow Similar p_T dependance

Exclusive charmonium production

- Exclusive J/ψ , $\psi(2S)$ and χ_c production:
 - test of QCD and pomeron exchange
 - sensitive to gluon-saturation effects
 - provides constraints on gluon PDF at small x (5x10⁻⁶)

LHCb analysis:

- single J/ ψ , ψ (2S) exclusive production J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002
- double charmonium exclusive production: J/ ψ , ψ (2S) and χ_c J. Phys. G: 41 (2014) 115002

⇒ select events with

- exclusively 2 or 4 tracks identified as μ (no other activity)
 - Use backward extension of the vertex detector
- no photons or 1 for $\chi_c \rightarrow J/\psi \gamma$
- low pT (>400MeV/c)

Inelastic

Exclusive J/ ψ and ψ (2S) production

Backgrounds:

- Non resonant (QED)
- Feeddown (χ_c)
- Inelastic

- Signal and inelastic background shapes:
 - Regge theory: $exp(-bp_T^2)$
 - b parameters fitted to data in agreement with extrapolation from HERA's data

Exclusive J/ ψ and ψ (2S) production

 Differential cross section in agreement with NLO prediction and with saturation models

Double charmonium exclusive production

• Similar analysis for double exclusive production of J/ψ , $\psi(2S)$ and χ_c

Cross sections in 2.0<y<4.5 (elastic + inelastic):

$$\sigma^{J/\psi J/\psi} = 58 \pm 10(\text{stat}) \pm 6(\text{syst}) \,\text{pb},
\sigma^{J/\psi \psi(2S)} = 63^{+27}_{-18}(\text{stat}) \pm 10(\text{syst}) \,\text{pb},
\sigma^{\psi(2S)\psi(2S)} < 237 \,\text{pb},
\sigma^{\chi_{c0}\chi_{c0}} < 69 \,\text{nb},
\sigma^{\chi_{c1}\chi_{c1}} < 45 \,\text{pb},
\sigma^{\chi_{c2}\chi_{c2}} < 141 \,\text{pb},$$

 $2 \text{ J/}\psi$ production cross section in agreement with theory prediction but large errors on both sides

Shapes in agreement with expectations from single production

Exclusive fraction: 42±13 %

Summary and Prospects

LHCb is contributing to the progress in understanding quarkonium production:

Inclusive

- Differential production cross section (J/ ψ , ψ (2S), Y's, η_c)
- Including production from b
- Feeddown of χ_h to Y's

Exclusive charmonium

- Single and double charmonium
- ⇒ Constraints on QCD models, PDFs, MC tuning
- Prospects
 - Bottomonium measurements are mostly statistically limited ⇒ more to come
 - Y polarisation
 - Production measurements of J/ ψ , Y (ψ (2S)) will be repeated at 13 TeV with early 2015 data