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The big picture in a nutshell

Quarkonium production is an ideal probe to study ; red CLL;Z;;Z;.ZT ;
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Feed-down: Charmonium system
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Feed-down: Bottomonium system
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Feed-down: Bottomonium system
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The NRQCD factorization approach

NRQCD is an effective field theory that factorizes quarkonium production in two steps:
1) production of the initial quark-antiquark pair (perturbative QCD)
2) hadronization of the quark pair into a bound quarkonium state (non-perturbative QCD)

0(Q) = 3 81QQn)] - 0%n) | =T e

Quantum numbers of the heavy quark pair
S, L, J = spin, orbital and total ang. momentum

Short-distance coefficients (SDCs) Long-distance matrix elements (LDMEs)
* Cross section of partonic processes to form * Probability of QQ in state 72 to form
QQin state N ® PDF quarkonium state Q
* Process-dependent functions of kinematics * Universal constants (independent of kinematics)
* Can be calculated perturbatively (expansion in a) * Determined from fits to experimental data

The LDMEs should follow a hierarchy in powers of v, the relative velocity of the quark pair in the
quarkonium system = Non-relativistic approximation (v>~0.3 for the Y and ~0.1 for the Y):
— Truncation of v-expansion, NRQCD includes only few terms (intermediate states)
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S-wave states:
CS term 3S.[*! (same n as Q)
CO terms: 1S /8l 35 (8]
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The NRQCD factorization approach: P-wave production

Open questions in P-wave production:

1. What is the role of the color singlet component 3P 1],
is it negligible as in S-wave production?

2. Is the 3S,!8! color octet component dominant, as predicted by v-scaling?
Or is it suppressed, as in S-wave production? | , Faccoleral
Do the S,®l, or ‘P,[8lterms play a role?

3. Are all ¢ states produced similarly?
K VSN 2 NoVS- X VS-A 2 Xpl(1P) vs. x,(2P) vs. %, (3P)
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—> Theoretical uncertainties cancel
* Measurements of “absolute”  cross sections
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* Measurement of x polarization: ultimate discriminant for 35,8 vs. 1S 8]
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CMS: quarkonium detection performance
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CMS: quarkonium detection performance vs. ATLAS/LHCb
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CMS: quarkonium detection performance vs. ATLAS/LHCb
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CMS: quarkonium detection performance vs. ATLAS/LHCb
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CMS: P-wave quarkonium detection

P-wave quarkonia are detected via their radiative decays

AcJ *Jhp+y and

XpJ(NP) = Y(mS) + vy
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CMS: P-wave quarkonium detection

P-wave quarkonia are detected via their radiative decays

Xeg P +y  and ¥y (NP) = Y(mS) + v
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CMS: P-wave quarkonium detection
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CMS: P-wave quarkonium detection
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CMS: P-wave quarkonium detection
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CMS: Prompt ., / %, Cross section ratio at 7 TeV
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CMS: Prompt ., / %4 cross section ratio at 7 TeV
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CMS: Prompt ., / %4 cross section ratio at 7 TeV
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CMS: %, / x4 Cross section ratio at 8 TeV

Main variable m, from kinematic vertex fit > Mass resolution good enough to separate ¥, ,(1P) and
Yp2(1P) signals, separated by only 19 MeV (as compared to around 46 MeV in the ¥ system)
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CMS: %, / x4 Cross section ratio at 8 TeV

Main variable m, from kinematic vertex fit > Mass resolution good enough to separate ¥, ,(1P) and
Yp2(1P) signals, separated by only 19 MeV (as compared to around 46 MeV in the ¥ system)
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CMS: Comparison to data and theory calculations

Cross section ratio measurements compatible with other LHC results
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CMS: Comparison to data and theory calculations

Cross section ratio measurements compatible with other LHC results (exception: LHCb calo vs. conv)

NLO NRQCD calculations, including CS (fixed norm.) and 3S,8 CO components
Data: CDF y_ ratio = CO contributions rather large and important
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CMS: Comparison to data and theory calculations

Cross section ratio measurements compatible with other LHC results (exception: LHCb calo vs. conv)
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CMS: Comparison to data and theory calculations

Cross section ratio measurements compatible with other LHC results (exception: LHCb calo vs. conv)

NLO NRQCD calculations, including CS (fixed norm.) and 3S,8 CO components
Data: CDF y_ ratio = CO contributions rather large and important
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Data: LHC+CDF y_ ratios + CDF o(y_) = CS contribution completely dominates x. and ¥, production
—> Predictions for ¥, ratio by applying NRQCD scaling rules

NLO NRQCD calculations, including CS (fixed norm.) and 35,8/ CO components
Data: LHC Y(nS) c.s. and polarizations + ¥, ratios = CO rather large and important
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Conclusion

* P-wave measurements are crucial to understand quarkonium production
= Understand feed-down effects into S-wave states
—> Constrain LDMEs of the x. and x,, states

* Reconstruction of converted photons leads to an excellent x mass resolution
- CMS has the potential to study all relevant decays

XCJ%J/LI-H-YI ij(lp)%Y(ls)-FY: be(ZP)%Y(l,ZS)i'Y, ij(3P)%Y(11273S)+’Y
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* CMS measured the cross section ratio in the x. and x,(1P) systems as function of p;, with smaller
uncertainties than competing analyses; CMS P-wave data is compatible with other LHC data

* The precision of the present CMS measurements is already sufficiently good to provide
interesting comparisons with theoretical calculations
... and will become much better in time for the next QWG workshop!
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* Further measurements in P-wave sector
—> Absolute x_ and x,, cross sections
—> Polarizations of prompt X, and X, states; Non-trivial but crucial measurement

* Present CMS P-wave measurements are conducted in the region 7 < p;< 25 GeV
* Higher p; values reached once full LHC Run | data will be exploited (extend x. analysis up to 40 GeV)
* Run Il data should further improve p; reach and accuracy
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CMS: Prompt %, / x.4 Cross section ratio at 7 TeV
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CMS: Prompt %, / x.4 Cross section ratio at 7 TeV
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