# η<sub>c,</sub>J/ψ, h<sub>c</sub> DECAY CONSTANTS FROM LATTICE AND QCD SUM RULES



## **QUARKONIUM 2014**

Int. Workshop on Heavy Quarkonium 2014, Nov. 10-14 2014, CERN

## NUMEROUS NEW CHARMONIA STATES OBSERVED IN THE LAST 10 YEARS

| State           | $m (\mathrm{MeV})$  | Γ (MeV)            | $J^{PC}$   | Process (mode)                                                        | Experiment $(\#\sigma)$                | Year | Status |
|-----------------|---------------------|--------------------|------------|-----------------------------------------------------------------------|----------------------------------------|------|--------|
| $h_c(1P)$       | $3525.41 \pm 0.16$  | <1                 | 1+-        | $\psi(2S) 	o \pi^0 \left(\gamma \eta_c(1S)\right)$                    | CLEO [8–10] (13.2)                     | 2004 | OK     |
|                 |                     |                    |            | $\psi(2S)  ightarrow \pi^0 \left( \gamma  ight)$                      | CLEO [8–10] (10), BES [11] (19)        |      |        |
|                 |                     |                    |            | $par{p}  ightarrow (\gamma \eta_c)  ightarrow (\gamma \gamma \gamma)$ | E835 [12] (3.1)                        |      |        |
|                 |                     |                    |            | $\psi(2S)  ightarrow \pi^0 \left( ight)$                              | BESIII [11] (9.5)                      |      |        |
| $\eta_c(2S)$    | $3638.9 \pm 1.3$    | $10{\pm}4$         | 0-+        | $B \to K (K_S^0 K^- \pi^+)$                                           | Belle [13,14] (6.0)                    | 2002 | OK     |
|                 |                     |                    | e          | $e^{+}e^{-} \rightarrow e^{+}e^{-} (K_{S}^{0}K^{-}\pi^{+})$           | BABAR [15,16] (7.8),                   |      |        |
|                 |                     |                    |            | \ B /                                                                 | CLEO [17] (6.5), Belle [18] (6)        |      |        |
|                 |                     |                    |            | $e^{+}e^{-} \rightarrow J/\psi \left( \right)$                        | BABAR [19] (np), Belle [20] (8.1)      |      |        |
| $\chi_{c2}(2P)$ | $3927.2\pm2.6$      | $24\pm6$           | 2++        | $e^+e^-\to e^+e^-(D\bar D)$                                           | Belle [21] (5.3), BABAR [22,23] (5.8)  | 2005 | OK     |
| X(3872)         | $3871.68 \pm 0.17$  | < 1.2              | 1++/2-+    | $B \to K \left( \pi^+ \pi^- J/\psi \right)$                           | Belle [36,37] (12.8), BABAR [38] (8.6) | 2003 | ОК     |
|                 |                     |                    |            | $p\bar{p} \rightarrow (\pi^+\pi^-J/\psi) + \dots$                     | CDF $[39-41]$ (np), D0 $[42]$ (5.2)    |      |        |
|                 |                     |                    |            | $B	o K\left(\omega J/\psi ight)$                                      | Belle [43] (4.3), BABAR [23] (4.0)     |      |        |
|                 |                     |                    |            | $B	o K(D^{*0}\overline{D}^0)$                                         | Belle [44,45] (6.4), BABAR [46] (4.9)  |      |        |
|                 |                     |                    |            | $B	o K\left(\gamma J/\psi ight)$                                      | Belle [47] (4.0), BABAR [48,49] (3.6)  |      |        |
|                 |                     |                    |            | $B	o K\left(\gamma\psi(2S) ight)$                                     | BABAR [49] (3.5), Belle [47] (0.4)     |      |        |
|                 |                     |                    |            | $pp \rightarrow (\pi^+\pi^-J/\psi) + \dots$                           | LHCb [50] $(np)$                       |      |        |
| X(3915)         | $3917.4 \pm 2.7$    | $28^{+10}_{-9}$    | $0/2^{?+}$ | $B	o K\left(\omega J/\psi ight)$                                      | Belle [51] (8.1), BABAR [52] (19)      | 2004 | OK     |
|                 |                     |                    |            | $e^+e^- \rightarrow e^+e^- \left(\omega J/\psi\right)$                | Belle [53] (7.7), BABAR [23] (np)      |      |        |
| X(3940)         | $3942^{+9}_{-8}$    | $37^{+27}_{-17}$   | ??+        | $e^+e^- \to J/\psi  (D\overline{D}^*)$                                | Belle [54] (6.0)                       | 2007 | NC!    |
|                 |                     |                    |            | $e^{+}e^{-} \rightarrow J/\psi \left( \right)$                        | Belle [20] (5.0)                       |      |        |
| G(3900)         | $3943 \pm 21$       | $52{\pm}11$        | 1          | $e^+e^-	o\gamma(D\overline{D})$                                       | BABAR [55] (np), Belle [56] (np)       | 2007 | OK     |
| Y(4008)         | $4008^{+121}_{-49}$ | $226 {\pm} 97$     | 1          | $e^+e^- ightarrow \gamma(\pi^+\pi^-J/\psi)$                           | Belle [57] (7.4)                       | 2007 | NC!    |
| $Z_1(4050)^+$   | $4051^{+24}_{-43}$  | $82^{+51}_{-55}$   | ?          | $B \to K \left( \pi^+ \chi_{c1}(1P) \right)$                          | Belle [58] (5.0), BABAR [59] (1.1)     | 2008 | NC!    |
| Y(4140)         | $4143.4\pm3.0$      | $15^{+11}_{-7}$    | ??+        | $B	o K\left(\phi J/\psi ight)$                                        | CDF [60,61] (5.0)                      | 2009 | NC!    |
| X(4160)         | $4156^{+29}_{-25}$  | $139^{+113}_{-65}$ | ??+        | $e^+e^- 	o J/\psi  (D\overline{D}^*)$                                 | Belle [54] (5.5)                       | 2007 | NC!    |
| $Z_2(4250)^+$   | $4248^{+185}_{-45}$ | $177^{+321}_{-72}$ | ?          | $B \to K \left( \pi^+ \chi_{c1}(1P) \right)$                          | Belle [58] (5.0), BABAR [59] (2.0)     | 2008 | NC!    |
| Y(4260)         | $4263^{+8}_{-9}$    | $95{\pm}14$        | 1          | $e^+e^- 	o \gamma \left(\pi^+\pi^-J/\psi\right)$                      | BABAR [62,63] (8.0)                    | 2005 | OK     |

## **THE CHARMONIUM SYSTEM** - states below $D_{(s)}D_{(s)}$ thresholds:



#### CHARMONIA & CHARMONIA DECAY CONSTANTS

- o for understanding the features of quark confinement
- testing the validity of various quark models
- describing weak processes involving charm states

 $\eta_c$ , J/ $\psi$ ,  $h_c \rightarrow f_{nc}$ ,  $f_{J/\psi}$ ,  $f_{hc}$ 

#### DECAY CONSTANTS ARE DEFINED AS:

$$\langle 0|\bar{c}(0)\gamma_{\mu}\gamma_{5}c(0)|\eta_{c}(p)\rangle = -f_{\eta_{0}}p_{\mu} ,$$

P –pseudoscalar current

$$\langle 0|\bar{c}(0)\gamma_{\mu}c(0)|J/\psi(p,\lambda)\rangle = f_{J/\psi}m_{J/\psi}e_{\mu}^{\lambda},$$

V- vector current

#### Only $J/\psi$ can be directly measured:

$$\Gamma(J/\psi \to e^+e^-) = \frac{4\pi\alpha_{\rm em}}{3m_{J/\psi}} \frac{4}{9}f_{J/\psi}^2$$

Other decay constants have to be extracted from or once known are used in

- various charmonia radiative decays
- two-body nonleptonic B- & D-decays to charmonia

will come to that later....

#### **CALCULATION OF DECAY CONSTANTS:**

nonperturbative objects  $\rightarrow$  TWO NONPERTURBATIVE METHODS:

- QCD SUM RULES
- LATTICE QCD

we are going to compare the results obtained by these two methods

# QCD SUM RULES

$$q$$
  $q$   $q$ 

$$\Pi_{\mu\nu}(q) = i \int dx \ e^{iqx} \langle 0|\mathcal{T} \left[ V_{\mu}^{\dagger}(x) V_{\nu}(0) \right] |0\rangle = \left( q_{\mu} q_{\nu} - g_{\mu\nu} q^2 \right) \Pi_{V}(q^2) \qquad V_{\mu} = \bar{c} \gamma_{\mu} c$$

$$\Pi_P(q^2) = i \int dx \ e^{iqx} \langle 0|\mathcal{T}\left[P^{\dagger}(x)P(0)\right]|0\rangle, \ P = 2m_c \ i\bar{c}\gamma_5 c$$

$$\Pi_{\mu\nu\rho\sigma}(q) = i \int dx \ e^{iqx} \langle 0 | \mathcal{T} \left[ T^{\dagger}_{\mu\nu}(x) T_{\rho\sigma}(0) \right] = P^{-}_{\mu\nu\rho\sigma} \Pi_{-}(q^2) + P^{+}_{\mu\nu\rho\sigma} \Pi_{+}(q^2)_{\text{RESULTS}}$$
"OPE" or "theoretical" side:

"OPE" or "theoretical" side:

$$\Pi_i(q^2) = \frac{1}{\pi} \int_0^\infty \frac{\text{Im}\Pi_i(s)}{s - q^2} ds \equiv \int_0^\infty \frac{\rho_i(s)}{s - q^2} ds$$

- 
$$\rho_i^{\text{pert}}(s) = \rho_i^{(0)}(s) + \frac{\alpha_s}{\pi} \rho_i^{(1)}(s)$$



$$- \left. \prod_{i}^{\text{non-pert}}(q^2) = \left. C_i^{\text{G}}(Q^2) \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle \right|_{Q^2 = -q^2} \qquad \left\langle \frac{\alpha_s}{\pi} G_{\mu\nu}^a G^{\mu\nu} \right.^a \right\rangle \equiv \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle$$

$$C_i^{\rm G}(Q^2) \propto 1/Q^{2n_i}$$
  $\cdots$ 

## "hadronic" or "phenomenological" side:

$$\Pi_i(q^2) = \frac{1}{\pi} \int_0^\infty \frac{\text{Im}\Pi_i(s)}{s - q^2} ds \equiv \int_0^\infty \frac{\rho_i(s)}{s - q^2} ds$$

$$\rho(s) = \sum_{H_q} |\langle 0|j(0)|H_q\rangle|^2 \, \delta(s-E_H^2)$$
 
$$\rho(s) = |\langle 0|j(0)|H_0\rangle|^2 \, \delta(s-M_H^2) + \sum_{H'} |\langle 0|j(0)|H'\rangle|^2 \, \delta(s-E_{H'}^2)$$
 
$$\pi^{\text{OPE}}(\mathbf{q}) \approx \pi^{\text{hadr}}(\mathbf{q})$$
 
$$\pi^{\text{OPE}}(\mathbf{q}) \approx \pi^{\text{hadr}}(\mathbf{q})$$

#### **MOMENT SUM RULES:**

$$\mathcal{M}_n(Q_0^2) = \frac{1}{n!} \left( \frac{d}{dq^2} \right)^n \Pi_i(q^2) \Big|_{q^2 = -Q_0^2}$$

 $Q_0^2 = 4m_c^2 \xi$ 

$$\mathcal{M}_{n}^{\text{theo. }i}(\xi) = \mathcal{M}_{n}^{\text{pert.}}(\xi) + \mathcal{M}_{n}^{\text{non-pert.}}(\xi)$$

$$= \frac{1}{(4m_{c}^{2})^{n}} \int_{0}^{1} \frac{2v(1-v^{2})^{n-1}\rho_{i}(v)}{\left[1+\xi(1-v^{2})\right]^{n+1}} dv + \frac{1}{n!} \left(-\frac{d}{dQ^{2}}\right)^{n} C_{i}^{G}(Q^{2}) \left\langle \frac{\alpha_{s}}{\pi} G^{2} \right\rangle \Big|_{Q^{2} = Q_{0}^{2} = 4m_{c}^{2}\xi}$$

$$\mathcal{M}_n^{\text{phen. } i}(Q_0^2) = \sum_{k=0}^{\infty} \frac{|\langle 0|J^i(0)|H_k\rangle|^2}{\left(m_{H_k}^2 + Q_0^2\right)^{n+1}}$$



$$\mathcal{M}_{n}^{\text{phen. }V}(Q_{0}^{2}) = \frac{f_{J/\psi}^{2}}{\left(m_{J/\psi}^{2} + Q_{0}^{2}\right)^{n+1}} + \int_{s_{0}^{+}}^{\infty} \frac{\rho_{V}^{\text{pert.}}(s)ds}{(s + Q_{0}^{2})^{n+1}}$$

$$\mathcal{M}_{n}^{\text{phen. }P}(Q_{0}^{2}) = \frac{\left(f_{\eta_{c}}m_{\eta_{c}}^{2}\right)^{2}}{\left(m_{\eta_{c}}^{2} + Q_{0}^{2}\right)^{n+1}} + 4m_{c}^{2} \int_{s_{0}^{+}}^{\infty} \frac{\rho_{P}^{\text{pert.}}(s)ds}{(s + Q_{0}^{2})^{n+1}}$$

$$\mathcal{M}_{n}^{\text{phen. }+}(Q_{0}^{2}) = \frac{f_{h_{c}}^{2}}{\left(m_{h_{c}}^{2} + Q_{0}^{2}\right)^{n+1}} + \int_{s_{0}^{+}}^{\infty} \frac{\rho_{+}^{\text{pert.}}(s)ds}{(s + Q_{0}^{2})^{n+1}}$$

$$\mathcal{M}_{n}^{\text{phen. }-}(Q_{0}^{2}) = \frac{\left[f_{J/\psi}^{T}(\mu)\right]^{2}}{\left(m_{J/\psi}^{2} + Q_{0}^{2}\right)^{n+1}} + \int_{s_{0}^{+}}^{\infty} \frac{\rho_{-}^{\text{pert.}}(s)ds}{(s + Q_{0}^{2})^{n+1}}$$

## **"ONE RESONANCE + CONTINUUM" RULE**

$$s_0^{\psi} \in [3.3^2, 3.65^2] \text{ GeV}^2$$

$$s_0^{\eta_c} \in [3.1^2, 3.5^2] \text{ GeV}^2$$

$$s_0^{h_c} \in [3.6^2, 4.0^2] \text{ GeV}^2$$

#### FINAL QCD SR EXPRESSIONS

$$\widetilde{\mathcal{M}}_{n}^{i}(\xi, s_{0}) = \frac{1}{(4m_{c}^{2})^{n}} \int_{0}^{v[s_{0}^{i}]} \frac{2v(1-v^{2})^{n-1}\rho_{i}^{\text{pert.}}(v)}{\left[1+\xi(1-v^{2})\right]^{n+1}} dv + \frac{1}{n!} \left(-\frac{d}{dQ^{2}}\right)^{n} C_{i}^{G}(Q^{2}) \left\langle \frac{\alpha_{s}}{\pi} G^{2} \right\rangle \Big|_{Q^{2}=4m_{c}^{2}\xi}$$

$$v[s_{0}] = \sqrt{1-4m_{c}^{2}/s_{0}}$$

#### CHARMONIA MASSES and DECAY CONSTANTS:

$$m_{J/\psi}^2 = -4m_c^2 \xi + \frac{\widetilde{\mathcal{M}}_n^V(\xi, s_0^{\psi})}{\widetilde{\mathcal{M}}_{n+1}^V(\xi, s_0^{\psi})}, \qquad f_{J/\psi} = \left(m_{J/\psi}^2 + 4m_c^2 \xi\right)^{\frac{n+1}{2}} \left[\widetilde{\mathcal{M}}_n^V(\xi, s_0^{\psi})\right]^{1/2}$$

$$m_{\eta_c}^2 = -4m_c^2 \xi + \frac{\widetilde{\mathcal{M}}_n^P(\xi, s_0^{\eta_c})}{\widetilde{\mathcal{M}}_{n+1}^P(\xi, s_0^{\eta_c})}, \qquad f_{\eta_c} = \left(m_{\eta_c}^2 + 4m_c^2 \xi\right)^{\frac{n+1}{2}} \left[\widetilde{\mathcal{M}}_n^P(\xi, s_0^{\eta_c})\right]^{1/2} \frac{2m_c}{m_{\eta_c}^2}$$

$$m_{h_c}^2 = -4m_c^2 \xi + \frac{\widetilde{\mathcal{M}}_n^+(\xi, s_0^{h_c})}{\widetilde{\mathcal{M}}_{n+1}^+(\xi, s_0^{h_c})}, \qquad f_{h_c}(\mu_0) = \left(m_{h_c}^2 + 4m_c^2 \xi\right)^{\frac{n+1}{2}} \left[\widetilde{\mathcal{M}}_n^+(\xi, s_0^{h_c})\right]^{1/2} \Big|_{\mu_0 = m_c \sqrt{1 + 4\xi}}$$

$$m_{J/\psi}^2 = -4m_c^2 \xi + \frac{\widetilde{\mathcal{M}}_n^-(\xi, s_0^{\psi})}{\widetilde{\mathcal{M}}_{n+1}^-(\xi, s_0^{\psi})}, \qquad f_{J/\psi}^T(\mu_0) = \left(m_{J/\psi}^2 + 4m_c^2 \xi\right)^{\frac{n+1}{2}} \left[\widetilde{\mathcal{M}}_n^-(\xi, s_0^{\psi})\right]^{1/2}$$

$$\mu^2 = m_c^2 + Q_0^2 \qquad Q_0^2 = 4m_c^2 \xi$$

## **PARAMETERS** $m_c^{MS}(m_c) = 1.275(15) \text{ GeV}, <\alpha_s/\pi \text{ G}^2> = 0.009(7) \text{ GeV}^4$ , $s_0^i$ , $\xi$

#### **CONDITIONS**

- $\checkmark$   $m_{calc} (\eta_c, J/\psi) = m_{ex} (\eta_c, J/\psi) \text{ up to } < 1 \% / <math>m_{calc} (h_c) = m_{ex} (h_c) \text{ up to } < 5 \%$
- $\checkmark \rho^{\text{pert}}(\text{NLO})/\rho^{\text{pert}}(\text{LO}) < 30 \%$
- $\checkmark \rho^{\text{non-pert}}/\rho^{\text{pert}} < 50 \%$

→ STABILITY WINDOW



#### LATTICE QCD

- unquenched  $(N_f = 2)$  dynamical light quark simulations
- use the gauge field configurations generated by ETMC coll. at four spacing points with the maximally twisted mass term:

$$S = a^4 \sum_{x} \bar{\psi}(x) \left\{ \frac{1}{2} \sum_{\mu} \gamma_{\mu} \left( \nabla_{\mu} + \nabla_{\mu}^* \right) - i \gamma_5 \tau^3 r \left[ m_{\rm cr} - \frac{a}{2} \sum_{\mu} \nabla_{\mu}^* \nabla_{\mu} \right] + \mu_c \right\} \psi(x)$$

$$\psi(x) = [c(x) \ c'(x)]^T$$

$$J^{PC} = 0^{-+} P = 2\mu_c \ \bar{c}\gamma_5 c' ,$$

$$J^{PC} = 1^{--} V_i = Z_A \ \bar{c}\gamma_i c' \text{or} T_{0i} = Z_T(\mu) \ \bar{c}\sigma_{0i}c' ,$$

$$J^{PC} = 1^{+-} T_{ij} = Z_T(\mu) \ \bar{c}\sigma_{ij}c' i, j \in (1, 2, 3) ,$$

**DECAY CONSTANTS** 

$$\langle 0|P|\eta_c(\vec{0})\rangle = f_{\eta_c}n_{\eta_c}^2,$$

$$\langle 0|V_i|J/\psi(\vec{0},\lambda)\rangle = f_{J/\psi}n_{J/\psi}e_i^{\lambda},$$

$$\langle 0|T_{0i}(\mu)|J/\psi(\vec{0},\lambda)\rangle = -if_{J/\psi}^T(\mu)n_{J/\psi}e_i^{\lambda},$$

$$\langle 0|T_{ij}(\mu)|h_c(\vec{0},\lambda)\rangle = -f_{h_c}(\mu)m_{h_c}\varepsilon_{ijk}e_k^{\lambda}.$$

CORRELATION FUNCTIONS – for calculation of masses and decay constants:

$$\begin{split} &\left\langle \sum_{\vec{x}} P(\vec{x};t) P^{\dagger}(0;0) \right\rangle = -4 \mu_c^2 \sum_{\vec{x}} \langle \operatorname{Tr} \left[ S_c(\vec{0},0;\vec{x},t) \gamma_5 S_c'(\vec{x},t;\vec{0},0) \gamma_5 \right] \rangle \\ &\underbrace{t \gg 0}_{m_{\eta_c}} \frac{\cosh[m_{\eta_c}(T/2-t)]}{m_{\eta_c}} \left| \langle 0|P(0)|\eta_c(\vec{0}) \rangle \right|^2 e^{-m_{\eta_c}T/2}, \\ &\left\langle \sum_{\vec{x}} V_i(\vec{x};t) V_i^{\dagger}(0;0) \right\rangle = -Z_A^2 \sum_{\vec{x}} \langle \operatorname{Tr} \left[ S_c(\vec{0},0;\vec{x},t) \gamma_i S_c'(\vec{x},t;\vec{0},0) \gamma_i \right] \rangle \\ &\underbrace{t \gg 0}_{m_{J/\psi}} \frac{\cosh[m_{J/\psi}(T/2-t)]}{m_{J/\psi}} \left| \langle 0|V_i(0)|J/\psi(\vec{0},\lambda) \rangle \right|^2 e^{-m_{J/\psi}T/2} \\ &\left\langle \sum_{\vec{x}} T_{0i}(\vec{x};t) T_{0i}^{\dagger}(0;0) \right\rangle = -Z_T^2 \sum_{\vec{x}} \langle \operatorname{Tr} \left[ S_c(\vec{0},0;\vec{x},t) \sigma_{0i} S_c'(\vec{x},t;\vec{0},0) \sigma_{0i} \right] \rangle \\ &\underbrace{t \gg 0}_{m_{J/\psi}} \frac{\cosh[m_{J/\psi}(T/2-t)]}{m_{J/\psi}} \left| \langle 0|T_{0i}(0)|J/\psi(\vec{0},\lambda) \rangle \right|^2 e^{-m_{J/\psi}T/2} \\ &\left\langle \sum_{\vec{x}} T_{ij}(\vec{x};t) T_{ij}^{\dagger}(0;0) \right\rangle = -Z_T^2 \sum_{\vec{x}} \langle \operatorname{Tr} \left[ S_c(\vec{0},0;\vec{x},t) \sigma_{ij} S_c'(\vec{x},t;\vec{0},0) \sigma_{ij} \right] \rangle \\ &\underbrace{t \gg 0}_{m_{h_c}} \frac{\cosh[m_{h_c}(T/2-t)]}{m_{h_c}} \left| \langle 0|T_{ij}(0)|h_c(\vec{0},\lambda) \rangle \right|^2 e^{-m_{h_c}T/2} \end{split}$$

**Hadron masses**  $\implies$   $a^*m_H$  (H =  $\eta_c$ , J/ $\psi$ ,  $h_c$ ) - from a constant of the plateau of  $m_H^{eff}$ :

$$\frac{\cosh\left[m_H^{\text{eff}}(t)\left(\frac{T}{2} - t\right)\right]}{\cosh\left[m_H^{\text{eff}}(t)\left(\frac{T}{2} - t - 1\right)\right]} = \frac{C_J(t)}{C_J(t+1)}$$

**Decay constants** - extrapolation of decay constants obtained at four lattice spacing to the continuum limit:

$$f_H = f_H^{\text{cont.}} \left[ 1 + b_H m_q + c_H \frac{a^2}{(0.086 \text{ fm})^2} \right]$$

-dependence on the sea quark masses& on the lattice spacings

m<sub>a</sub> & a-dependence of results:



## **CONCLUSIONS**

- we have calculated four decay constants of charmonium states  $f_{nc}$ ,  $f_{J/\psi}$ ,  $f_{J/\psi}$ ,  $f_{hc}$ 

## QCD SR

– one resonance + continuum  $m_c = 1.275(15) \text{ GeV}$  $<\alpha_s/\pi$  GG> = 0.009(7) GeV<sup>4</sup>

## Lattice QCD

 unquenched (N<sub>f</sub> = 2) simulations using twisted mass QCD (generated by ETMC coll.) at four spacing points

$$f_{J/\psi} = (401 \pm 46) \text{ MeV}$$



 $R_{J/\psi}^{T}$  (2 GeV) = 0.975 ± 0.010



# GOOD **AGREEMENT**

$$f_{J/\psi} = (418 \pm 9) \text{ MeV}$$

$$f_{J/\psi}^{T}$$
 (2 GeV)= (410 ± 10) MeV

$$R_{J/\psi}^{T}$$
 (2 GeV) = 0.981± 0.008

# $f_{nc} = (309 \pm 39) \text{ MeV}$

## NOT SO GOOD AGREEMENT

- $<\alpha_s/\pi$  GG> fixed in the vector channel - problem?
- more hadronic resonances needed ?



$$f_{nc} = (389 \pm 7) \text{ MeV}$$

$$f_{hc} = (162 \pm 22) \text{ MeV}$$
 more hadronic resonances neede

$$f_{hc} = (235 \pm 9) \text{ MeV}$$

#### PHENOMENOLOGICAL IMPLICATIONS

$$\eta_c \rightarrow \gamma \gamma^{(*)}$$

$$\Gamma(\eta_c \rightarrow \gamma \gamma) = \frac{4\pi \alpha_{\rm em}^2}{81} m_{\eta_c}^3 |F_{\gamma \eta_c}(0)|^2$$

Pabar coll.:  $\mathbf{F}_{\gamma\eta_c}(\mathbf{Q}^2)$  from dσ( e<sup>+</sup> e<sup>-</sup> → e<sup>+</sup> e<sup>-</sup> η<sub>c</sub>)/dQ<sup>2</sup> which is driven by γ γ<sup>\*</sup> → η<sub>c</sub> in the range Q<sup>2</sup> = (0,50) GeV<sup>2</sup> data are **very well described by a single pole**:



$$m_{pole} \approx m_{\eta_C} = 2.9(1)(1) \text{ GeV}$$

- both photons on-shell  $\eta_c \rightarrow \gamma \gamma$ :  $F_{\gamma \eta_c}(0)$  has a pole structure:

$$\Gamma(\eta_c \to \gamma \gamma) = \frac{4\pi\alpha_{\rm em}^2}{81} m_{\eta_c}^3 \left(\frac{f_{\eta_c}}{m_{\eta_c}^2 (1+\delta)}\right)^2$$

Experimentally:

$$\Gamma^{\rm exp}(\eta_c \rightarrow \gamma \gamma) = 5.0(4) \ {\rm keV}$$

Using our 
$$f_{\eta_c}$$
 (lattice) = 0.387(8)  $\rightarrow \delta$  = 0.15 (5) GeV<sup>2</sup>

Factorization approximation:  $\delta = 0 \rightarrow$  the result larger than exp. value:

$$\Gamma^{\text{fact.}}(\eta_c \to \gamma \gamma) = (6.64 \pm 0.27) \text{ keV}$$

## DIFFERENT MODELS FOR $F_{vn_c}(0)$ vs $\delta = 0.15$ (5) GeV<sup>2</sup>

$$ightharpoonup$$
 perturbative QCD  $F_{\eta_c\gamma}(0)\simeq rac{4f_{\eta_c}}{m_{\eta_c}^2+2\langle {f k}_\perp^2
angle}$  (Feldmann, Kroll, 9709203)

 $\delta$  = 0.15 (5) GeV² - too large value to be interpreted as  $\sqrt{\langle {\bf k}_{\perp}^2 \rangle} = 0.81(14)~{
m GeV}$ (mean transverse momentum of c-quark)

> heavy quark symmetry

$$2\langle \mathbf{k}_{\perp}^2 \rangle \to b_{\eta_c} m_{\eta_c}$$

$$2\langle {\bf k}_{\perp}^2\rangle \rightarrow b_{\eta_c}m_{\eta_c} \qquad b_{\eta_c}=2m_c-m_{\eta_c} \qquad \text{(Lansberg,Pham, 0603113)}$$

 $\delta$  = 0.15 (5) GeV<sup>2</sup> - too large value to be interpreted as  $b_{\eta_c} = \delta m_{\eta_c} = 0.46(16) \text{ GeV}$ 

the nearest vector meson dominance (VDM)

$$F_{\eta_c \gamma}^{\text{VMD}}(0) = 2 \frac{f_{J/\psi}}{m_{J/\psi}} \frac{2V^{J/\psi \to \eta_c}(0)}{m_{J/\psi} + m_{\eta_c}}$$

from lattice: 
$$V^{J/\psi \to \eta_c}(0) = 1.92(3)(2)$$

(Becirevic, Sanfilippo, 1206.1445)

with our  $f_{\eta_c}$  (lattice) = 0.387(8)



$$\Gamma(\eta_c \to \gamma \gamma) = 6.0(4) \text{ keV}$$

again too large when compared to the experimental value

## $B \rightarrow K$ nonleptonic decays

- class II decays in the generalized factorization approximation:

$$\Gamma(B \to J/\psi K) = \frac{G_F^2 |V_{cb} V_{cs}^*|^2}{32\pi m_B^3} \lambda^{3/2} (m_B^2, m_{J/\psi}^2, m_K^2) a_2^2 \left[f_{J/\psi}^2 \left[f_+^{B \to K} (m_{J/\psi}^2)\right]^2\right],$$

$$\Gamma(B \to \eta_c K) = \frac{G_F^2 |V_{cb} V_{cs}^*|^2}{32\pi m_B^3} (m_B^2 - m_K^2)^2 \lambda^{1/2} (m_B^2, m_{\eta_c}^2, m_K^2) a_2^2 \left[f_0^{B \to K} (m_{\eta_c}^2)\right]^2$$

$$\frac{B(B \to \eta_c K)}{B(B \to J/\psi K)} \sim \left[ \left( \frac{f_{\eta_c}}{f_{J/\psi}} \right)^2 \left[ \left( \frac{f_0^{B \to K}(m_{\eta_c}^2)}{f_+^{B \to K}(m_{J/\psi}^2)} \right)^2 \right]$$

our result:  $f_{\eta_c}/f_{J/\psi} = 0.926(6)$ 



$$\frac{f_{+}^{B\to K}(m_{J/\psi}^{2})}{f_{0}^{B\to K}(m_{\eta_{c}}^{2})} = 1.53(10)|_{B^{\pm}-\text{mode}}, 1.56(13)|_{B^{0}-\text{mode}}$$

- ✓ in agreement with LCSR calculation (Duplancic, Melic, 0805.4170)
- ✓ in agreement with quentched lattice QCD (Becirevic et al, 1205.5811)
- ✓ differs from the uquenched lattice study with NR QCD for heavy quarks = 1.37(2)(Bouchard et al, 1306.0434)

## CONCLUSION - PHENOMENOLOGICAL RESULTS

- $ho_c 
  ightarrow \gamma \gamma$ using our  $f_{\eta c}$  experimental result is not reproduced nonfactorizable effects?
- → B → K nonleptonic decays
- using our  $f_{nc}/f_{J/\psi}$  QCD SR results, LCSR results and old lattice QCD results
  - experimental  $f_{+}^{B \to K}(m_{J/\psi}^2)/f_0^{B \to K}(m_{\eta c}^2)$  is well reproduced
- just a limit for BR(B<sup>+</sup>  $\rightarrow$ h<sub>c</sub> K<sup>+</sup>) < 3.8 x 10<sup>-6</sup> it would be interesting to measure this BR

## MORE RESEARCH IS NEEDED:

- $\rightarrow$   $\eta_c$  decay constant in QCD SR at NLO, with the inclusion of higher hadronic
- resonances

(Becirevic, Melic, in progress)

- $\rightarrow \eta_c \rightarrow \gamma \gamma$  in QCD SR at NLO
- $\rightarrow$  J/ $\psi \rightarrow \eta_c \gamma$ ,  $h_c \rightarrow \eta_c \gamma$  in lattice QCD (Becirevic et al, in progress) and QCD SR at NLO