Probing Quarkonium Production Mechanisms with Jet Substructure

Thomas Mehen Duke University

Quarkonium Working Group, CERN November 14, 2014

Review of Quarkonium Production Theory

Heavy Quarkonium Fragmenting Jet Functions

New Tests of NRQCD Using Jet Observables

Non-Relativistic QCD (NRQCD) Factorization Formalism

(Bodwin, Braaten, Lepage)

$$\sigma(gg \to J/\psi + X) = \sum_{n} \sigma(gg \to c\bar{c}(n) + X) \langle \mathcal{O}^{J/\psi}(n) \rangle$$
$$n - {}^{2S+1}L_J^{(1,8)}$$

double expansion in α_s, v

NRQCD long-distance matrix element (LDME)

 $\langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1]})\rangle \sim v^{3}$ CSM - lowest order in v

$$\langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]})\rangle, \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]})\rangle, \langle \mathcal{O}^{J/\psi}({}^{3}P_{J}^{[8]})\rangle \sim v^{7}$$

color-octet mechanisms

Global Fits with NLO CSM + COM

 $e^+e^-, \gamma\gamma, \gamma p, p\bar{p}, pp \to J/\psi + X$

fit to 194 data points, 26 data sets, Butenschoen and Kniehl, PRD 84 (2011) 051501

NLO: CSM + COM Required to Fit Data

Status of NRQCD approach to J/ ψ Production

NLO: COM + CSM required for most processes

extracted LDME satisfy NRQCD v-scaling $\langle \mathcal{O}^{J/\psi}({}^{3}\!S_{1}^{[1]}) \rangle = 1.32 \,\,\mathrm{GeV^{3}}$

$$\chi^2_{\rm d.o.f.} = 857/194 = 4.42$$

Polarization Puzzle

 $^3S_1^{[8]}$ fragmentation at large pT predicts transversely polarized J/ ψ , ψ '

Braaten, Kniehl, Lee, 1999

Polarization of J/ ψ at LHCb

Polarization of $\Upsilon(nS)$ at CMS

Recent Attempts to Resolve J/ ψ Polarization Puzzle

simultaneous NLO fit to CMS, ATLAS high pt production, polarization

Chao, et. al. PRL 108, 242004 (2012)

Recent Attempts to Resolve J/ ψ Polarization Puzzle

i) large p_t production at CDF

Bodwin, et. al., PRL 113, 022001 (2014)

ii) resum logs of p_t/m_c using AP evolution

iii) fit COME to pt spectrum, predict basically no polarization

Extracted COME inconsistent with global fits

$$\langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{(8)})\rangle = 0.099 \pm 0.022 \,\text{GeV}^{3} \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{(8)})\rangle = 0.011 \pm 0.010 \,\text{GeV}^{3} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{(8)})\rangle = 0.011 \pm 0.010 \,\text{GeV}^{5}$$

Recent Attempts to Resolve J/ ψ Polarization Puzzle

Faccioli, et. al. PLB736 (2014) 98

Lourenco, et. al., NPA, in press

argue for ${}^{1}S_{0}^{(8)}$ dominance in both $\psi(2S)$ & $\Upsilon(3S)$ production

Fragmenting Jet Functions

Procura, Stewart, arXiv:0911.4980 Jain, Procura, Waalewijn, arXiv:1101.4953 Procura, Waalewijn, arXiv:1111.6605

jets with identified hadrons

cross sections determined by fragmenting jet function (FJF):

 $\mathcal{G}_g^h(E,R,\mu,z)$

inclusive hadron production: fragmentation functions

$$\frac{1}{\sigma_0} \frac{d\sigma^h}{dz} \left(e^+ e^- \to h X \right) = \sum_i \int_z^1 \frac{dx}{x} C_i(E_{\rm cm}, x, \mu) D_i^h(z/x, \mu)$$

jet cross sections: jet functions

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}z}(E,R) = \int \mathrm{d}\Phi_{N} \mathrm{tr}[H_{N}S_{N}] \prod_{\ell} J_{\ell}$$

$$\mathcal{G}_g^h(E,R,\mu,z) \longrightarrow D_i^h(z/x,\mu), J_\ell$$

relationship to jet function:

$$\sum_{h} \int_{0}^{1} \mathrm{d}z z D_{j}^{h}(z,\mu) = 1$$

$$\int_{0}^{1} J_{i}(E,R,z,\mu) = \frac{1}{2} \sum_{h} \int \frac{\mathrm{d}z}{(2\pi)^{3}} z \mathcal{G}_{i}^{h}(E,R,z,\mu)$$

cross section for jet w/ identified hadron from jet cross section

relationship to fragmentation functions

$$\mathcal{G}_i^h(E,R,z,\mu) = \sum_i \int_z^1 \frac{\mathrm{d}z'}{z'} \mathcal{J}_{ij}(E,R,z',\mu) D_j^h\left(\frac{z}{z'},\mu\right) \left[1 + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^2}{4E^2 \tan^2(R/2)}\right)\right]$$

matching coefficients calculable in perturbation theory

$$\begin{split} \frac{\mathcal{J}_{gg}(E,R,z,\mu)}{2(2\pi)^3} &= \delta(1-z) + \frac{\alpha_s(\mu)C_A}{\pi} \left[\left(L^2 - \frac{\pi^2}{24} \right) \delta(1-z) + \hat{P}_{gg}(z)L + \hat{\mathcal{J}}_{gg}(z) \right] \\ \hat{\mathcal{J}}_{gg}(z) &= \begin{cases} \hat{P}_{gg}(z) \ln z & z \le 1/2 \\ \frac{2(1-z+z^2)^2}{z} \left(\frac{\ln(1-z)}{1-z} \right)_+ & z \ge 1/2. \end{cases} & L = \ln[2E \tan(R/2)/\mu], \\ \text{scale for } \mathcal{J}_{ij}(E,R,z,\mu) \end{split}$$

sum rule for matching coefficients

$$\sum_{j} \int_{0}^{1} dz \, z \, \mathcal{J}_{ij}(R, z, \mu) = 2(2\pi)^{3} \, J_{i}(R, \mu)$$

NRQCD fragmentation functions

Braaten, Yuan, hep-ph/9302307 Braaten, Chen, hep-ph/9604237 Braaten, Fleming, hep-ph/9411365

Perturbatively calculable at the scale 2m_c

Altarelli-Parisi evolution: $2m_c$ to 2E tan(R/2)

FJF in terms of fragmentation function

$$\begin{aligned} \mathcal{G}_{g}^{\psi}(E,R,z,\mu) \ &= \ D_{g \to \psi}(z,\mu) \left(1 + \frac{C_{A}\alpha_{s}}{\pi} \left(L_{1-z}^{2} - \frac{\pi^{2}}{24} \right) \right) \\ &+ \frac{C_{A}\alpha_{s}}{\pi} \left[\int_{z}^{1} \frac{dy}{y} \tilde{P}_{gg}(y) L_{1-y} D_{g \to \psi} \left(\frac{z}{y}, \mu \right) \right. \\ &\left. + 2 \int_{z}^{1} dy \frac{D_{g \to \psi}(z/y,\mu) - D_{g \to \psi}(z,\mu)}{1-y} L_{1-y} \right. \\ &\left. + \theta \left(\frac{1}{2} - z \right) \int_{z}^{1/2} \frac{dy}{y} \hat{P}_{gg}(y) \ln \left(\frac{y}{1-y} \right) D_{g \to \psi} \left(\frac{z}{y}, \mu \right) \right] \end{aligned}$$

$$L_{1-z} = \ln\left(\frac{2E\tan(R/2)(1-z)}{\mu}\right)$$

For large E, FJF ~ NRQCD frag. function (at scale 2E tan(R/2))

$$\mathcal{G}_g^h(E, R, \mu = 2E \tan(R/2), z) \to D_g^{\psi}(z, 2E \tan(R/2)) + O(\alpha_s)$$

NRQCD FF's (at scale 2m_c)

(normalization arbitrary)

Evolution to 2E tan(R/2) will soften discrepancies

Color-Octet ³S₁ fragmentation function, FJF

M. Baumgart, A. Leibovich, T.M., I. Z. Rothstein, arXiv:1406.2295

FJF's at Fixed Energy vs. z

FJF's at Fixed z vs. Energy

 $^{1}S_{0}^{(8)}$ dominance predicts negative slope for z vs. E if z > 0.5

Ratios of Moments

$E\tan(R/2) < \mu < 4E\tan(R/2)$

Ratios of Moments

Gluon FJF for different extractions of LDME

fix z, vary energy

- Butenschoen and Kniehl, PRD 84 (2011) 051501, arXiv:1105.0822

Bodwin, et. al. arXiv:1403.3612

— Chao, et. al. PRL 108, 242004 (2012)

Gluon FJF for different extractions of LDME

Conclusions

NRQCD describes much world data on quarkonium data but puzzles, esp. polarization, remain

existing analyses focus on inclusive p_t spectra, polarization can we find other observables distinguish various production mechanisms at high p_T ?

measuring $Q\overline{Q}$ within jets, and using jet observables should provide insights into $Q\overline{Q}$ production

quarkonium fragmenting jet functions (FJFs)

If ${}^{(8)}_{0}$ mechanism dominates high p_T production FJF should have negative slope for z(E), for z>0.5

Backup

fragmentation function (QCD)

$$D_q^h(z) = z \int \frac{\mathrm{d}x^+}{4\pi} \, e^{ik^- x^+/2} \, \frac{1}{4N_c} \, \mathrm{Tr} \sum_X \, \left\langle 0 | \vec{\eta} \, \Psi(x^+, 0, 0_\perp) | Xh \right\rangle \left\langle Xh | \bar{\Psi}(0) | 0 \right\rangle \Big|_{p_h^\perp = 0}$$

fragmentation function (SCET)

$$D_q^h \left(\frac{p_h^-}{\omega}, \mu\right) = \pi \omega \int dp_h^+ \frac{1}{4N_c} \operatorname{Tr} \sum_X \, \bar{\eta} \, \langle 0 | [\delta_{\omega,\bar{\mathcal{P}}} \, \delta_{0,\mathcal{P}_\perp} \, \chi_n(0)] | Xh \rangle \langle Xh | \bar{\chi}_n(0) | 0 \rangle$$

Jet function (SCET)

$$J_u(k^+\omega) = -\frac{1}{\pi\omega} \operatorname{Im} \int d^4x \ e^{ik\cdot x} \ i \left\langle 0 \right| \operatorname{T} \bar{\chi}_{n,\omega,0\perp}(0) \ \frac{\bar{\eta}}{4N_c} \chi_n(x) \left| 0 \right\rangle$$

fragmentation jet function (SCET)

$$\mathcal{G}_{q,\text{bare}}^{h}(s,z) = \int \mathrm{d}^{4}y \, e^{\mathrm{i}k^{+}y^{-}/2} \, \int \mathrm{d}p_{h}^{+} \, \sum_{X} \, \frac{1}{4N_{c}} \, \mathrm{tr} \left[\frac{\vec{p}}{2} \big\langle 0 \big| [\delta_{\omega,\overline{\mathcal{P}}} \, \delta_{0,\mathcal{P}_{\perp}} \chi_{n}(y)] \big| Xh \big\rangle \big\langle Xh \big| \bar{\chi}_{n}(0) \big| 0 \big\rangle \right]$$

$$\delta(p^+/z - P_H^+) \to \delta(p^+/z - P_H^+)\delta(p^- - s/p^+)$$
FF
FJF
FJF