Charmonium decays into light hadrons at BESIII

Ronggang Ping (For the BESIII Collaboration) Institute of High Energy Physics, CAS

Quarkonium2014, Nov. 10-14, CERN, GENEVA

Introduction

MASS

Vector charmonium data sets

Vector charmonium	Previous data	BESIII now	Goal
J/ψ	BESII: 58 M	1.2B(20×BESII)	10 B
ψ (3686)	CLEO: 28 M	0.5B(20×CLEO)	3 B
$\psi(3770)$	CLEO: 0.8 fb ⁻¹	2.9fb ⁻¹ (3.5×CLEO)	20 fb ⁻¹

- $\eta_c, \eta_c(2S), \chi_{cI}$ are available via γ transition, and h_c available via pion transiton.
- charmonium physics
 - $\rho\pi$ puzzle, and violation of the 12% rule
 - non-DD decays of $\psi(3770)$
 - charmonium structure and properties
 - light hadron spectroscopy

$\psi(3770) \rightarrow B\overline{B}(B = \Sigma, \Xi), \Lambda\overline{\Lambda}\pi^{+}\pi^{-}, \Lambda\overline{\Lambda}\pi^{0}, \Lambda\overline{\Lambda}\eta, p\overline{p}\pi^{0}$

- $\psi(3770)$ decays are dominated by DD mode PDG 2014: $Br[\psi(3770) \rightarrow D\overline{D}] = 93^{+8}_{-9}\%$
- Non DD decay measurements $Br[\psi(3770) \rightarrow \text{light hadrons}] =$ $(14.7 \pm 3.2)\%$: BESII: Phys. Lett. B641, 145 (2006) $(-3.3 \pm 1.4^{+6.6}_{-1.8})$: CLEO: Phys. Rev. Lett., 96, 092002 (2006)
- No significant light hadron decay modes are exclusively established in experiment so far.
- NRQCD calculation yields upper limits of 5% for light hadron decays (PRL101, 112001), while other phenomenological model, e.g., hadron loops give large fractions(PRL102, 172001). 3

- Using 2.9 fb⁻¹ taken at 3.773 GeV.
- Continuum backgrounds are subtracted using 44 pb⁻¹ data taken at 3.65 GeV.
- No significant events are observed .

	$N_{\rm obs}^f$	$N_{\mathbf{B}}^{f}$				$\mathcal{B}_{\psi(3770) \to f}$	$\mathcal{B}^{ ext{up}}$
Mode f	(3.773)	(3.773)	$N^{\mathrm{up}}_{\psi(3770) \to f}$	ϵ	$\Delta_{\rm sys}$	$[\times 10^{-4}]$	$[\times 10^{-4}]$
$\Lambda\bar{\Lambda}\pi^{+}\pi^{-}$	844.0 ± 33.6	5.2	481.2	0.1321	8.0	$1.80^{+1.74}_{-2.30} \pm 0.40$	<4.7
$\Lambda ar{\Lambda} \pi^0$	124.9 ± 14.4	3.4	83.6	0.1694	8.0	$-1.28^{+0.67}_{-1.51}\pm0.15$	< 0.7
$\Lambda ar{\Lambda} \eta$	74.0 ± 9.5	0.9	87.7	0.1518	8.1	$-1.22^{+1.44}_{-3.21}\pm0.19$	<1.9
$\Sigma^+ \bar{\Sigma}^-$	100.5 ± 11.9	0.7	96.0	0.1975	8.0	$-0.21^{+0.63}_{-1.56}\pm0.05$	<1.0
$\Sigma^0 \bar{\Sigma}^0$	43.5 ± 6.7	0.0	56.6	0.1752	8.0	$0.30^{+0.05}_{-0.58}\pm0.05$	< 0.4
$\Xi^- \overline{\Xi}^+$	48.5 ± 7.0	0.0	119.7	0.1060	8.1	$0.31^{+0.66}_{-1.32}\pm0.05$	<1.5
$\Xi^0 \bar{\Xi}^0$	43.5 ± 6.6	1.3	60.7	0.0581	8.2	$-0.80^{+1.03}_{-2.72}\pm0.14$	<1.4

PRD 87, 112011 (2013)

 $\psi(3770) \rightarrow p\overline{p}\pi^0$

Data sets: 2.9 fb⁻¹ @ 3.773 GeV, 44.5 pb⁻¹ @ 3.65 GeV

	$\sigma_0^{\psi(3770)\to p\bar{p}\pi^0}$		$\sigma_0^{p\bar{p}\to\psi(3770)\pi^0} \text{ [nb]}$
Solution	[pb]	$\phi_{ m Fit}$ [°]	at 5.26 GeV
1	< 0.22	$269.8^{+52.4}_{-48.0} \pm 11.0$	< 0.79
2	$33.8 \pm 1.8 \pm 2.1$	$269.7 \pm 2.3 \pm 0.3$	122 ± 10

 $\eta_c(2S), h_c, \chi_{cI} \to p\overline{p}$

•These decays are suppressed by helicity selection rule.

 $Br[\chi_{c0} \to p\overline{p}] = (2.23 \pm 0.13) \times 10^{-4}$

 $Br[\eta_c \to p\bar{p}] = (1.41 \pm 0.17) \times 10^{-3}$

• Theoretical estimation:

 $Br[h_c \to p\overline{p}] \sim 10^{-3} \text{ (PRD 86, 034011)}$

PRD 88, 112001 (2013)

Channels	$\mathcal{B}(\psi(3686) \rightarrow \gamma \chi_{cJ}) \times \mathcal{B}(\chi_{cJ} \rightarrow p \bar{p}) (\times 10^{-1})$	⁵) $\mathcal{B}(\chi_{cJ} \to p \bar{p}) (\times 10^{-5})$
χ_{c0}	$2.37 \pm 0.08 \pm 0.09$	$24.5 \pm 0.8 \pm 1.3$
χ_{c1}	$0.79 \pm 0.04 \pm 0.03$	$8.6\pm0.5\pm0.5$
χ_{c2}	$0.73 \pm 0.04 \pm 0.03$	$8.4 \pm 0.5 \pm 0.5$

$$\psi(3686) \to \Lambda \overline{\Sigma}^{\pm} \pi^{\mp} + c.c, \ \omega K^+ K^-$$

• pQCD "12% rule" and long existing $\rho\pi$ puzzle

$$Q_h = \frac{\mathcal{B}_{\psi(3686) \to h}}{\mathcal{B}_{J/\psi \to h}} \approx \frac{\mathcal{B}_{\psi(3686) \to e^+e^-}}{\mathcal{B}_{J/\psi \to e^+e^-}} = 12.7\% \qquad Q_{\rho\pi} = (1.89 \pm 0.73) \times 10^{-3}$$

•Mass spectrum of $\overline{\Sigma}^{\pm}\pi^{\mp}$ may indicate the Λ^* / Σ^* hints

• Large uncertainty for branching fraction of $\psi(3686) \rightarrow \omega K^+K^-$

$$B(\psi(3686) \rightarrow \omega K^+ K^-) = (1.85 \pm 0.25) \times 10^{-4}$$

with uncertainty ~13%, and
 $Q_{\omega K^+ K^-} = (21.8 \pm 5)\%$

PRD 88, 112007

 $\psi(3686) \rightarrow \Lambda \overline{\Sigma}^{\pm} \pi^{\mp} + c.c$

- 106 million $\psi(3686)$ decays are used.
- Σ ($\overline{\Sigma}$) is reconstructed with $n\pi$ ($p\pi$) mode.
- For determine detection efficiency, a preliminary partial wave analysis is performed.
 Λ(1810), Λ(1800), Λ(1670), Λ(1600), Λ(1405), Λ(1116), Λ(2325), Λ(1890), Λ(1690), Λ(1520), Λ(1830), Λ(1820), Σ(1660), Σ(1670), Σ(1580) and Σ(1385)

$$\begin{aligned} \mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^{+} \pi^{-} + \text{c.c.}) \\ &= (1.40 \pm 0.03 \pm 0.13) \times 10^{-4}, \\ \mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^{-} \pi^{+} + \text{c.c.}) \\ &= (1.54 \pm 0.04 \pm 0.13) \times 10^{-4}, \\ \mathcal{Q}_{\Lambda \bar{\Sigma}^{-} \pi^{+}} = \frac{\mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^{-} \pi^{+})}{\mathcal{B}(J/\psi \to \Lambda \bar{\Sigma}^{-} \pi^{+})} = (9.3 \pm 1.2)\%, \end{aligned}$$

• To resulve Λ^* / Σ^* contribution, PWA is desirable.

 $\psi(3686) \rightarrow \omega K^+ K^-$

 $\chi_{cI} \rightarrow \eta' K^+ K^-$

- Compared to J/ ψ and $\psi(3686)$ decays, relatively little is known about χ_{cJ} decays.
- Look for scalar states, e.g. f₀(1370), f₀(1500), and so on, and test the glueball-qqbar mixing relations (Int.J.Mod.Phys.27,1250135).

The schematic Feynman diagrams of $\chi_{c1} \rightarrow PS$ via three-gluon annihilations.

• Looking for $K_0^*(1430) \rightarrow \eta' K$

- Use 106 million $\psi(3686)$ decays
- η ' is reconstructed with decays

 $\eta' \to \gamma \rho^0 \to \gamma \pi^+ \pi^-$ and

$$\eta' \rightarrow \eta \pi^+ \pi^- \rightarrow \gamma \gamma \pi^+ \pi^-$$

Process	$\mathcal{B}(\times 10^{-4})$
$\mathcal{B}(\chi_{c1} \to \eta' K^+ K^-)$	8.75 ± 0.87
$\mathcal{B}(\chi_{c2} \to \eta' K^+ K^-)$	1.94 ± 0.34

where (a) (b) for mode I, and (c) (d) for mode II

Process	$\mathcal{B}(\times 10^{-4})$
$ \begin{array}{l} \chi_{c1} \rightarrow K_0^*(1430)^{\pm} K^{\mp}, \ K_0^*(1430)^{\pm} \rightarrow \eta' K^{\pm} \\ \chi_{c1} \rightarrow \eta' f_0(980), \ f_0(980) \rightarrow K^+ K^- \end{array} $	$\begin{array}{c} 6.41 \pm 0.57 \substack{+2.09 \\ -2.71} \\ 1.65 \pm 0.47 \substack{+1.32 \\ -0.56} \end{array}$
$ \begin{split} \chi_{c1} &\to \eta' f_0(1710), f_0(1710) \to K^+ K^- \\ \chi_{c1} &\to \eta' f_2'(1525), f_2'(1525) \to K^+ K^- \end{split} $	$0.71 \pm 0.22^{+0.68}_{-0.48} \\ 0.92 \pm 0.23^{+0.55}_{-0.51}$

13

$J/\psi \to p\overline{p}a_0(980)$

- The nature of a₀(980) and f₀(980) is a long-standing problem of physics
- The measurement of J/ψ→pp̄a₀ (980) will provide an additional constraint to any model describing a₀(980) formation and decays.
- χ PT provides a description of J/ $\psi \rightarrow$ NNMM process, yet to be test experimentally.

PRC **69**, 015201

• 225 million J/ ψ decays

PRD 90, 052009

$$J/\psi \to p\overline{p}a_0(980),$$
$$a_0(980) \to \pi^0 \eta$$

is observed for the first time.

- $Br(J/\psi \rightarrow p\overline{p}a_0(980) \rightarrow p\overline{p}\pi^0\eta) = (6.8 \pm 1.2 \pm 1.3) \times 10^{-5}.$
- Interference with N^* states is not taken into account.
- Comparison with $Br(J/\psi \rightarrow p\overline{p}\pi^+\pi^-)$ from the PDG shows preference $r_4=0.2$ in ChPT.

 $J/\psi \rightarrow Pe^+e^- (P = \eta !/\eta / \pi^0)$

 Electromagnetic decays are suggested as an important probe to reveal the structure of hadrons.

- Measurements of EM decays for ρ, ω, ϕ mesons have been performed at CMD2, CLOE and so on.
- The branching fractions and form factors for $\phi \to \eta e^+ e^-$, $\omega \to \pi^0 e^+ e^$ are consistent with VMD model prediction, but for decay $\omega \to \pi^0 \mu^+ \mu^-$, measured Λ^{-2} significantly deviates from VDM.

PRD 89, 092008

- Using 225 million J/ψ decays
- γ -conversion backgrounds from $J/\psi \rightarrow P\gamma$ are subtracted.
- **Backgrounds from** $J/\psi \rightarrow P\phi/\omega$

are subtracted.

Non-peaking backgrounds are carefully checked with **MC** simulation.

Signal yield and peaking BG.

Modes	N_S	N_B	ϵ
$\overline{J/\psi \to \eta' e^+ e^- (\eta' \to \gamma \pi^+ \pi^-)}$	983.3 ± 33.0	27.4 ± 1.0	24.8%
$J/\psi \to \eta' e^+ e^- (\eta' \to \pi^+ \pi^- \eta)$	373.0 ± 19.9	8.5 ± 0.3	17.6%
$J/\psi \rightarrow \eta e^+ e^- (\eta \rightarrow \pi^+ \pi^- \pi^0)$	84.2 ± 9.6	5.3 ± 0.3	14.9%
$J/\psi \to \eta e^+ e^- (\eta \to \gamma \gamma)$	235.5 ± 16.4	8.7 ± 0.3	22.7%
$J/\psi \to \pi^0 e^+ e^- (\pi^0 \to \gamma \gamma)$	39.4 ± 6.9	1.1 ± 0.1	23.4%

PRD 89, 092008

Mode	Branching fraction	Combined result	Theoretical prediction
$\overline{J/\psi \to \eta' e^+ e^- (\eta' \to \gamma \pi^+ \pi^-)}$	$(6.01 \pm 0.20 \pm 0.34) \times 10^{-5}$		
$J/\psi \rightarrow \eta' e^+ e^- (\eta' \rightarrow \pi^+ \pi^- \eta)$	$(5.51 \pm 0.29 \pm 0.32) \times 10^{-5}$	$(5.81 \pm 0.16 \pm 0.31) \times 10^{-5}$	$(5.66 \pm 0.16) \times 10^{-5}$
$J/\psi \rightarrow \eta e^+ e^- (\eta \rightarrow \pi^+ \pi^- \pi^0)$	$(1.12 \pm 0.13 \pm 0.06) \times 10^{-5}$		
$J/\psi \to \eta e^+ e^- (\eta \to \gamma \gamma)$	$(1.17 \pm 0.08 \pm 0.06) \times 10^{-5}$	$(1.16 \pm 0.07 \pm 0.06) \times 10^{-5}$	$(1.21 \pm 0.04) \times 10^{-5}$
$J/\psi \to \pi^0 e^+ e^- (\pi^0 \to \gamma \gamma)$	$(7.56 \pm 1.32 \pm 0.50) \times 10^{-7}$	$(7.56 \pm 1.32 \pm 0.50) \times 10^{-7}$	$(3.89^{+0.37}_{-0.33}) \times 10^{-7}$

- Measured branching fraction for $J/\psi \rightarrow \eta' e^+e^-$, ηe^+e^- are consistent with the VMD predictions.
- But for $J/\psi \rightarrow \pi^0 e^+e^-$, there is about 2.5 standard deviation from the VMD prediction.
- Further improvement of the theoretical calculation are needed.

Summary

By using BESIII data sets taken at J/ψ , $\psi(3686)$ and $\psi(3770)$ peak, a lot of results on the light hadron decays are obtained.

- No significant non $D\overline{D}$ decays of $\psi(3773)$ are observed.
- No significant $\eta_c(2S), h_c \to p\overline{p}$ decays are observed.
- Measured Br. for $\psi(3686) \rightarrow \Lambda \overline{\Sigma}^{\pm} \pi^{\mp} + c.c, \omega K^{+} K^{-}$.
- Performed PWA analysis for $\chi_{cJ} \rightarrow \eta' K^+ K^-$.
- Observed $J/\psi \rightarrow p\overline{p}a_0(980)$.
- Observed $J/\psi \rightarrow \eta' e^+ e^-$, $\eta e^+ e^-$ and $\pi^0 e^+ e^-$.

A more interesting light hadron decays of charmonium will come soon!