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Heavy quarkonium as probe for QGP

Heavy quarkonium is an important probe for quark-gluon plasma
created in heavy ion collisions[T. Matsui, H. Satz (1986)].

The disappearance of states ⇔ properties of the plasma.

[CMS, PRL 107, 052302]

First step towards heavy ion collision:
understand the properties of quarkonium in a thermal plasma.
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Effective field theory description of heavy quarkonium

At T = 0 → hierarchy of scales: MQ � p = mv � Ebinding .

Quarkonium can be described by a Schrödinger equation.

The potential can be calculated form the Wilson loop:

i∂tW�(t, r) = Φ(t, r)W�(t, r), (1)

At late times, Φ(t, r) stabilizes ↔ static potential:

V (r) = lim
t→∞

Φ(t, r) = lim
t→∞

i
∂tW�(t, r)

W�(t, r)
. (2)

At T > 0, if MQ � p � T ∼ Ebinding , we can do the same but

W�(t →∞, r) = WE (τ → it → i∞, r). (3)

In HTL resummed perturbation theory, we get:

V (r) = −g2CF

4π

[
mD +

exp(−mDr)

r
+ iT φ(mDr)

]
+O(g4).

[Laine, Philipsen, Romatschke, Tassler (2007); Brambilla, Ghiglieri, Vairo and

Petreczky (2008); Beraudo, Blaizot, Ratti (2008)]
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Potential for heavy quarks

VS(r) = −g2CF

4π

[
mD +

exp(−mDr)

r
+ iT φ(mDr)

]
+O(g4).

First term → 2×thermal mass correction for heavy quarks.

Second term → standard Debye-screened potential.

Third imaginary term → damping:

φ(x) ≡ 2

∫ ∞
0

dz z

(z2 + 1)2

[
1− sin(zx)

zx

]

φ(x) is strictly increasing from φ(0) = 0, φ(∞) = 1.
r →∞ contribution, 2×single quark damping (quark
absorption in the plasma).
Destructive interference between the dampings.

The solution for the Schrödinger equation in real time decays →
loss of correlation between initial and final state → decoherence.



Introduction Potential from the lattice Results Conclusion

Effective field theory picture of quarkonium melting

Increasing the temperature:

The binding energy (from ReV) decreases.

The decay width (from ImV) increases.
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Potential from the lattice

In Euclidean lattice simulations:

It is easy to measure W�(r , τ) at each points of the lattice.

It is much harder to perform the limit τ → it → i∞!

We should find another way. . .

Let’s restart from the Schrödinger equation.

i∂tW�(t, r) = Φ(t, r)W�(t, r), (4)

Look for other consequence of the existence of the potential
description:

Φ(r , t) = V (r) + φ(r , t) with lim
t→∞

φ(r , t) = 0. (5)
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Consequences of the potential description

The Schrödinger equation can be solved:

W�(r , t) = exp[−i(ReV(r)t + Reσ(r, t))− |ImV(r)|t + Imσ(r, t)],

where σ(r , t) =

∫ t

0
φ(r , t) dt.

Perform Fourier transform and use W (r ,−t) = W ∗(r , t):

ρ�(r , ω) =
1

2π

∫ ∞
−∞

dt exp[i(ω − ReV(r))t− iReσ(r, |t|)sign(t)

−|ImV(r)||t|+ Imσ(r, |t|)]. (6)

From this expression, the short time physics φ(r , t), that vanishes
at some t∞ can be separated form the large time physics V (r).
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Consequences of the potential description

The late time physics can be integrated analytically.

Short time physics can be expanded supposing that
(ReV(r)− ω)t∞ is small:

ρ�(r , ω) ∝ |ImV (r)|cos[Reσ∞(r)]− (ReV (r)− ω)sin[Reσ∞(r)]

ImV (r)2 + (ReV (r)− ω)2

+c0(r) + c1(r)(ReV (r)− ω) + · · · (7)

where σ∞(r) = σ(r ,∞). [YB, Rothkopf 2012]

ρ(r , ω) contains a skewed Breit-Wigner peak.

We only need to fit this lowest lying peak to get V (r).

Same statement holds for W||(r , t) in Coulomb gauge

In HTL perturbation theory ReV, ImV, σ∞ are the same.

Earlier studies [Rothkopf, Hatsuda, Sasaki 2011] used a Lorentzian.
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Importance of skewing

We can use HTL perturbation theory to make a test of the method:
We know V (r) and calculate CE (r , τ), C>(r , t),Φ(r , t) ρ(r , ω) . . .

Parameters: eImσ∞(r), ImV (r), ReV (r); Reσ∞(r); c0(r); c1(r); c2(r).
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The lowest peak contains all the information for the potential!
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Can we get the spectral function?

We can get the potential from the spectral function but still lattice
provides us only Euclidean correlators:

Β Τ

W
HΤ

,r
L

Ω

Ρ
Hr

,Ω
L

The aim is to invert an integral equation of the form

W (τ) =

∫
dωK (ω, τ)ρ(ω), (here K (ω, τ) = e−ωτ ) (8)

i.e get ρ(ω) with Nτ points Dn = W (τn) known to some accuracy.

Discretize frequency space with nω points spaced by ∆ωl .

Denoting ρ(ωl) = ρl , l = 1..nω, equation (8) becomes

Dρ
i =

nω∑
l=1

∆ωlKilρl . (9)
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Difficulties in the analytical continuation

Β Τ

W
HΤ

,r
L

Ω

Ρ
Hr

,Ω
L

From the discretized version:

Dρ
i =

nω∑
l=1

∆ωlKilρl . (10)

It looks like we just have to invert the matrix ∆ωlKil . However:

The data contains errors → ρl ’s not completely fixed.

The spectrum contains sharp peaks, whose shape is of interest
→ fine discretization needed for ω so that nω � Nτ .
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Maximum Entropy Method

The inversion can be made unique:

Require the solution to minimize the distance to a prior m.

The distance is defined by an entropy functional S(ρ,m).

Common: usual or extended MEM [Asakawa et al 2003, Rothkopf 2011].

It can’t resolve the width of the peak [YB,Rothkopf 2013].

The peak does not have a Lorentzian shape.

Marginal improvements with better data.

Numerically too expensive to deal with very good data.
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New Bayesian reconstruction (BR) method:

We derived a new Bayesian method solving problems of MEM.

All points ρl are degrees of freedom.
MEM has Nτ d.o.f., Extended MEM can have ∼ 102.
BR can have 104 and we can place them as we want.

New Entropy S functional without flat directions.

Hyperparameters integrated explicitly (no Gaussian
approximation).

Here the prior m was set to a constant [YB, Rothkopf (2013)].
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Quenched Lattice

We generated new quenched anisotropic (ξ = 3.5, β = 7) lattice
data of size 323 × Nτ with Nτ = 24, 32, 40, 48, 56, 64, 72, 80, 96
corresponding to T = 839..209MeV .
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Temperature dependence of the potential:
Quenched Lattice

Real and Imaginary part of the potential at different temperature.
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Smooth transition between confining to Debye screened potential.
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Spectrum: Dependence on the prior

We use different priors for the reconstruction

Default: constant m(ω) = 1, we check m = 0.1,m = 10.

Change functional form m(ω) = ω2, ω−2.
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Only large r and T are not so stable.
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Potential: Dependence on the prior

We use different priors for the reconstruction

Default: constant m(ω) = 1, we check m = 0.1,m = 10.

Change functional form m(ω) = ω2, ω−2.
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Dependence on the number of data points

We vary the number of points used in the reconstruction:
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Very stable except at high r and T .

Jackknife error bars overlap.

Is the T-dependence only due to the lower number of points?

Taking the 32 first points form the Nτ = 96 (T=210MeV) we
can compare to T=629.
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Debye masses (Preliminary)

Debye-Hückel fit to the data enables a determination of the Debye
mass [S. Digal, O. Kaczmarek, F. Karsch and H. Satz 2005]

Re[V ](r ,T ) ≡ −αe
−mDr

r
− σ

23/4Γ(3/4)

√
r

mD
K1/4(mDr) + c .
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Temperature dependence of the potential:
Dynamical Lattice

We used the Nf = 2 + 1 ASQTAD lattices with ml = ms/20 by
the HotQCD collaboration, temperatures between
286MeV ≥ T ≥ 148MeV obtained varying the lattice spacing
β = 6.8 . . . 7.48 at fixed Nτ = 12.
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Figure: Lattice results for the potential at different temperatures and
comparison to the free energies in Coulomb gauge.
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Dependence on the number of data points and prior

We vary the number of points and the prior used in the
reconstruction:
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Very stable except at high r and T .

All the Jackknife error bars overlap!
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Conclusion

We calculated the heavy quark potential from quenched lattice
calculations:

Main issue: reconstruct the spectrum from Euclidean data.

The extended MEM finds the potential peak but fails to
capture its Lorentzian structure.
The new Bayesian approach captures the Lorentzian shape of
the peak. We get the real part as well as the imaginary part in
the case of precise data and large Nτ .

To extract the potential from the reconstructed spectra:

It is enough to fit the lowest peak

Next:

Continuum limit on the lattice . . .
Check the charmonium and bottomonium spectrum!
Can we understand heavy ion collisions?
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Test of the reconstructed spectra

Using LO HTL perturbation theory → calculate CE (τ, r), C>(t, r),
ρ(ω, r), Φ(t, r), V (r) and test the reconstruction method:

MEM where we have chosen to give the exact Euclidean data.

New BR method with relative gaussian errors in the data.
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Figure: r = 0.06fm(top) and r = 0.26fm (bottom); two observables:
Wilson loop (left): Wilson lines right).

Wilson loop harder to reconstruct because of cusp divergences
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Test of the reconstructed potential

We can now fit the potential from the spectra for the HTL’s and
quenched lattice data:
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Temperature dependence of the potential:
LO perturbation theory
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New Bayesian reconstruction method: Short summary

Inversion (10) ⇔ minimization procedure.

Starting with some ρl ’s, minimize the distance to the data

L =
1

2

∑
ij

(Di − Dρ
i )Cij(Dj − Dρ

j ), (11)

with Cij the covariance matrix of the data.

In because of errors the correct result should have L ∼ Nτ so
that

P(D|ρ) = exp(−L− γ(L− Nτ )2) (12)

and the limit γ →∞ is taken numerically.

Not yet enough to define a unique solution if nω > Nτ . . .
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New Bayesian reconstruction method: Short summary

Suppose that ρ(ω) is a smooth function that might be partly
known (prior function m(ω)).

We encode this in a probability function for ρ itself:

P(ρ|m, α) = exp[S ] = exp

[
α

nω∑
l=0

∆ωl

(
1− ρl

ml
− log

ρl
ml

)]
.

(13)

For any given α → unique solution ωl , l = 0..nω minimizing

P(ρ|D,m, α) =
P(D|ρ)P(ρ|m, α)

P(D|m, α)
. (14)

The final result P(ρ|D,m) is obtained by integrating out α

P(ρ|D,m) ∝ P(D|ρ)

∫
dαP(ρ|m, α). (15)

Unlike for the MEM, we first integrate over α explicitly and
then find the spectrum that minimize P(ρ|D,m)
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From the Euclidean correlator to the potential

Summary of the full method:
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Lattice computation: Calculate the Wilson loop W�(r , τ) for
all possible values of the imaginary time τ ∈ [0, β].

Analytic continuation: extract the spectrum ρ�(r , ω) by
inverting eq:

W�(r , τ) =

∫
dω e−ωτ ρ�(r , ω).

Fit: V (r) can be extracted from the lowest peak of ρ.
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