

Recent quarkonium results from STAR

Barbara Trzeciak for the STAR Collaboration Czech Technical University in Prague

> Quarkonium 2014 10 – 14 November, 2014 CERN

Outline

J/Ψ

> p+p, √s = 500 GeV, and Ψ(2S)
 > Au+Au, √s_{NN} = 200, 62.4, 39 GeV
 > U+U, √s_{NN} = 193 GeV

Upsilon

> p+p, $\sqrt{s} = 200 \text{ GeV}$ > d+Au, $\sqrt{s}_{NN} = 200 \text{ GeV}$ > Au+Au, $\sqrt{s}_{NN} = 200 \text{ GeV}$ > U+U, $\sqrt{s}_{NN} = 193 \text{ GeV}$ > $\Upsilon(1S) \text{ at } \sqrt{s}_{NN} = 200 \text{ GeV}$

Quarkonia in STAR Experiment

< TPC

tracking,

PID: dE/dx

 $J/\psi / \Upsilon \rightarrow e^+ e^- (\mu^+ \mu)$

 $|\eta| < 1, 0 < \phi < 2\pi$

VPD - minimum bias trigger

MTD
 BEMC - trigger
 PID: E/p (~1 for
 electron)

TOF - time
 resolution < 100 ps
 PID: 1/β

November 13,2014

November 13,2014

$J/\Psi p_{\tau}$ spectrum in p+p 500 GeV

$J/\Psi x_{\tau}$ scaling

$$\frac{d^2\sigma}{2\pi p_T \, dp_T \, dy} = g(x_T)/(\sqrt{s})^n$$

- ✓ In p+p 200 GeV J/ψ production follows the x_T scaling of cross-section at mid-rapidity at high p_T , with n = 5.6 ± 0.2 (Phys. Rev. C 80, 041902 (2009))
- $\sim x_{T}$ scaling observed also in 500 GeV data

→ x_{τ} scaling breaking transition from hard to soft process

n – number of constituents taking an active role in hadron production

Ψ(2S) in p+p 500 GeV

• Constrain $\psi(2S)$ feed-down contribution to inclusive J/ ψ production

- First measurement of ($\psi(2S)$ / J/ ψ) ratio in p+p at 500 GeV
 - Consistent with other experiments
 - No collision energy dependence observed

$J/\Psi R_{AA}$ in Au+Au 200 GeV

STAR high-p_T : Phys. Lett. B 722 (2013) 55 STAR low-p_T : Phys. Rev. C 90 (2014) 24906 Y.Liu et al., Nucl. Phys A 834 (2010) 317c Zhao, Rapp, Phys. Rev. C 82 (2010) 064905

~

- Suppression increases with collision centrality
- ✓ High-p_T R_{AA} is systematically higher

J/ψ at high-p_T almost not affected by CNM effects and recombination x.Zhao and R.Rapp, Phys. Rev. C82, 064905 (2010)

- High-p_T J/ψ suppressed in central collisions
 - → May indicate QGP effects
- Both models color screening + statistical regeneration describe the data well at low p_T

$J/\Psi R_{AA}$ in Au+Au 200 GeV

- Suppression increases with collision centrality
- High-p_T R_{AA} is systematically higher
- High-p_T J/ψ suppressed in central collisions
 - May indicate QGP effects

Y.Liu et al., Nucl. Phys A 834 (2010) 317c Zhao, Rapp, Phys. Rev. C 82 (2010) 064905

 At high p_T Liu et al. model describes the data well, while Zhao et. al model underpredicts the R_{AA}

J/Ψ BES results

• *Reference: 40-60% centrality*

STA

$J/\Psi R_{AA}$ from BES

Suppression observed for all energies: 200, 62.4 and 39 GeV, similar trend in p_T

 \rightarrow no strong energy dependence of J/ ψ R_{AA} within uncertainties

Data agrees with the prediction of the two-component model

• p+p reference for 62.4 and 39 GeV data from Color Evaporation Model (CEM) - large theoretical uncertainties

J/Ψ in U+U 193 GeV

J/Ψ in U+U 193 GeV

2

3

5

p_{_} [GeV/c]

7

4

RAA

1.6

1.4

1.2

0.8

0.6

0.4

0.2

 0^{\lfloor}_{0}

 $A{+}A \rightarrow J/\psi + X$

STAR Preliminary

100

50

Quarkonium 2014 Barbara Trzeciak, STAR 9

10

Upsilon

Upsilon in p+p and d+Au 200 GeV

Consistency with NLO pQCD
 CEM, except d+Au y~0

R. Vogt, Phys. Rep. 462125, 2008

Upsilon in d+Au 200 GeV, CNM effects

Suppression at y~0, in addition to shadowing and initial state parton energy loss

(Y - negligible co-mover absorption and recombination)

Upsilon in d+Au 200 GeV, CNM effects

Similar suppression seen at E772

 Better understanding of CNM effects needed

Upsilon signal in Au+Au 200 GeV

STAR

Upsilon R_{AA} in Au+Au 200 GeV

Strickland-Bazow Model (Nucl. Phys. A879, 25 (2012)): 428 < T < 442 MeV, internal energy potential

Emerick-Zhao-Rapp Model (*Eur. Phys. J A48, 72 (2012)*): CNM effects included, strong binding scenario

- Suppression increases with collision centrality
- Strong suppression in central collisions
 - Agreement with models that include presence of QGP

Upsilon in U+U 193 GeV

The same trend in Au+Au and U+U collisions

SIA

Upsilon states suppression in Au+Au

Liu-Chen Model: Phys. Lett. B697 (2011) 32

- Central collisions
 - \sim Indication of complete Υ (2S+3S) suppression

 $^{\prime}$ Suppression of $\Upsilon(1S)$ similar to high-p_ J/ ψ

Suppression of $\Upsilon(1S)$ in central collisions consistent with model predictions

Liu et al. Model – suppression mostly due to dissociation of the excited states (CNM effects not included)

Heavy Flavor Tracker (HFT)

 $B \rightarrow J/\psi + X$

- Inner tracking system with 3 sub-systems
 - Direct topological reconstruction of a decay vertex

0

0.1

0.2

0.3

Fully installed and takes data since 2014

-0.2

-0.1

3 0.4 0.5 pseudo-cτ (cm)

Muon Telescope Detector (MTD)

Precision quarkonium measurements via di-µ channel

μ advantages over e:

- No γ conversion
- Much less Dalitz decay contribution
- Less affected by radiative loses in the detector material

- Multi-gap Resistive
 Plate Chamber
 (MRPC) gas
 detector
- * Long-MRPCs

STAR

Summary

- No strong energy dependence of J/ψ suppression in Au+Au 200, 62.4, 39 GeV
- $^{\succ}$ Similar J/ ψ and Υ suppression in Au+Au and U+U
- Indication for complete Υ(2S) and Υ(3S) suppression in central collisions

Signals of the QGP presence

First ψ(2S) measurement in p+p at 500 GeV
 No collision energy dependence of (ψ(2S) / J/ψ) ratio seen

>HFT and MTD since 2014 – significant improvement of quarkonium measurements

Thank you !

November 13,2014

$J/\Psi v_2$ and p_T spectra in Au+Au 200 GeV_{STA}

- ✓ J/ ψ v₂ is consistent with zero at p_T > 2 GeV/c
 - → Disfavors the model with J/ψ production via thermalized (anti-)charm coalescence

- At low p_T J/ψ spectra softer than the TBW prediction from light hadron
 - small radial flow ?
 - regeneration at
 low p_T
 ?

November 13,2014

J/Ψ polarization in p+p 200 GeV

The angular distribution integrated over the azimuthal angle:

$$W(\cos\theta) \propto 1 + \lambda_{\theta} \cos^2\theta$$

 λ_{θ} – polarization parameter

 $\lambda_{\theta} = -1$ - longitudinal polarization $\lambda_{\theta} = 1$ - transverse polarization

- ✓ Polarization parameter λ_{θ} is measured in the helicity frame at |y| < 1 and $2 < p_T < 6$ GeV/c
 - → RHIC data indicate trend towards longitudinal polarization with increasing p_T
 - The result is consistent with NLO+ CSM

(2010)

J/Ψ polarization in p+p 500 GeV

- Information about full decay angular distribution
 - ✓ First J/ψ polarization measurement at $\sqrt{s} = 500$ GeV from STAR in progress
 ~22 pb⁻¹ vs ~1.8 pb⁻¹ (previous analysis)

 ${}^{\,\prime}$ Reconstruction of both θ and ϕ angles

 $_{\prime}$ J/ ψ signal up to $p_{\tau} \sim$ 15 GeV/c, can be divided into several p_{τ} bins