Lattice Design Choices for

Alex Bogacz

20-21 January 2014 Chavanne-de-Bogis, Switzerland

Thomas Jefferson National Accelerator Facility

Linac-Ring Option – LHeC Recirculator

RECIRCULATOR COMPLEX

- 1. 0.5 Gev injector
- 2. Two SCRF linacs (10 GeV per pass)
- 3. Six 180° arcs, each arc 1 km radius
- 4. Re-accelerating stations
- 5. Switching stations
- Matching optics
- 7. Extraction dump at 0.5 GeV

	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	1	1
Normalized emittance γε _{x,y} [μm]	3.75	50
Beta Function $\beta^*_{x,y}$ [m]	0.10	0.12
rms Beam size σ* _{x,y} [μm]	7	7
rms Divergence σ΄ _{x,y} [μrad]	70	58
Beam Current [mA]	(860) 430	6.6
Bunch Spacing [ns]	25 (50)	25 (50)
Bunch Population	1.7*10 ¹¹	(1*10 ⁹) 2*10 ⁹

The baseline 60 GeV ERL option proposed can give an e-p luminosity of 10³³ cm⁻²s⁻¹ (extensions to 10³⁴ cm⁻²s⁻¹ and beyond are being considered)

Thomas Jefferson National Accelerator Facility

-LHeo

LHeC Recirculator with ER

LHeC Recirculator with ER

LHeC Recirculator with ER

Why Energy Recovering RLA?

Weigh energy (60 GeV), high current (6.4 mA) beams: (384 MW beam power) would require sub GW (0.8 GW)-class RF systems in conventional linacs.

Invoking Energy Recovery alleviates extreme RF power demand (power reduced by factor (1 − η_{ERL}) ⇒ Required RF power becomes nearly independent of beam current.

Energy Recovering Linacs promise efficiencies of storage rings, while maintaining beam quality of linacs: superior emittance and energy spread and short bunches (sub-pico sec.).

^(e) GeV scale Energy Recovery demonstration with high ER ratio ($\eta_{ERL} = 0.98$) was carried out in a large scale SRF Recirculating Linac (**CEBAF ER Exp. in 2003**)

 No adverse effects of ER on beam quality or RF performance: gradients, Q, cryo-load observed – mature and reliable technology (next generation light sources)

Beam Dynamics Challenges/Mitigations

- Incoherent and coherent synchrotron radiation related effects on the electron beam
 - energy losses Size/Layout longitudinal emittance increase Size/Layout transverse emittance increase Lattice Beam Breakup Instability (BBU) single beam Lattice multi-pass Lattice **Depolarization effects** Lattice

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy LHeC Workshop, Chavannes-de-Bogis, Switzerland, January 20-21, 2014

Jefferson Lab

Cryo Unit Layout/Optics – Half-Cell 130^o FODO

10 GeV Linac – Focusing profile

E = 0.5 – 10.5 GeV

19 FODO cells (19 \times 2 \times 16 = 608 RF cavities)

$$\left\langle \frac{\beta}{E} \right\rangle = \left(\frac{1}{L} \int \frac{\beta}{E} \, ds \right)_{\min}$$

Thomas Jefferson National Accelerator Facility

Linac 1 – Multi-pass ER Optics

Linac 1 and 2 – Multi-pass ER Optics

Arc Optics – Beam Dynamics Issues

Natural momentum spread due to quantum excitations:

$$\frac{DS_E^2}{E^2} = \frac{55a}{24\sqrt{3}} \overset{\text{@}}{\in} \frac{\hbar c}{mc^2} \overset{\text{"""}}{=} \overset{\text{"""}}{g^5} I_3$$

Emittance dilution due to quantum excitations:

$$De^{N} = \frac{55 r_{0}}{48\sqrt{3}} \frac{\hbar c}{mc^{2}} g^{6} I_{5}$$

$$I_{5} = \overset{L}{0} \frac{H}{|r|^{3}} ds = \frac{q\langle H \rangle}{r^{2}},$$

 $H = gD^2 + 2aDD' + bD'^2$

Momentum Compaction – synchronous acceleration in the linacs:

135⁰ FODO Cell

$$\Delta \varepsilon^{N} = \frac{55 r_{0}}{48\sqrt{3}} \frac{\hbar c}{mc^{2}} \gamma^{6} \langle H \rangle \frac{\theta}{\rho^{2}} \qquad at 50.5 \, GeV \quad \Box$$

$$\langle H \rangle = 2.2 \times 10^{-2} m$$

 $\Delta \varepsilon^{N} = 82 \ micron \ rad$

Thomas Jefferson National Accelerator Facility

Flexible Momentum Compaction (FMC) Cell

Arc Optics – Emittance preserving FMC cell

$$\Delta \varepsilon^{N} = \frac{55 r_{0}}{48\sqrt{3}} \frac{\hbar c}{mc^{2}} \gamma^{6} \langle H \rangle \frac{\theta}{\rho^{2}}$$

Arc 1, Arc2

factor of 18 smaller than FODO

Arc5, Arc 6

total emittance increase in Arc 5: $\Delta \varepsilon_x^{N} = 4.268 \ \mu m \ rad$

Thomas Jefferson National Accelerator Facility

Energy Loss and Emittance Dilution in Arcs

ARC	E [GeV]	∆E [MeV]	σE/E [%]
1	10.4	0.678	0.00052
2	20.3	9.844	0.00278
3	30.3	48.86	0.00776
4	40.2	151.3	0.01636
5	50.1	362.3	0.02946
6	60	751.3	0.04829
7	50.1	362.3	0.06366
8	40.2	151.3	0.08065
9	30.3	48.86	0.10808
10	20.3	9.844	0.16205
11	10.4	0.678	0.31668
dump	0.500	0	6.66645

ARC	E [GeV]	$\Delta \epsilon_{ARC}$ [µm]	$\Delta \epsilon_t [\mu m]$
1	10.4	0.0025	0.0025
2	20.3	0.140	0.143
3	30.3	0.380	0.522
4	40.2	2.082	2.604
5	50.1	4.268	6.872
6	60	12.618	19.490
5	50.1	4.268	23.758
4	40.2	2.082	25.840
3	30.3	0.380	26.220
2	20.3	0.140	26.360
1	10.4	0.0025	26.362

Jefferson Lab

Energy loss and Integrated energy spread induced by SR

Total loss per particle about ~1.9 GeV

Compensated by additional linacs 20.3 MW

Integrated Emittance growth including all previous arcs

Before the IP a total growth of ~ 7 μm is accumulated The final value is ~ 26 μm

A. Valloni

Thomas Jefferson National Accelerator Facility

Vertical Separation of Arcs

Jefferson Lab — Thomas Jefferson National Accelerator Facility

Vertical Spreaders – Optics

Vertical Separation of Arcs

Thomas Jefferson National Accelerator Facility

-LHeO-

Arc 1 Optics (10 GeV)

Arc 3 Optics (30 GeV)

'Racetrack' vs 'Dogbone' RLA

Twice the acceleration efficiency for the 'Dogbone' topology

Challenge: traversing linac in both directions while accelerating

Thomas Jefferson National Accelerator Facility

-LHeO-

'Dogbone' vs 'Racetrack' - Arc-length

Net arc-length break even: if $\alpha = \pi/4$

Thomas Jefferson National Accelerator Facility

-LHeo

Future Muon Facilities – Muon Acceleration

Droplet Arcs – Layout

'Racetrack' vs 'Dogbone' ERL for LHeC

'Racetrack' vs 'Dogbone' ERL for LHeC

'Dogbone' RLA – Multi-pass Linac Optics

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Pros and Cons of a 'Dogbone' RLA

- High acceleration efficiency (≤2) traversing the linac in both directions while accelerating
- Better orbit separation at linac's end
 ~ energy difference between
 consecutive passes (2DE) vs (DE) in
 case of the 'Racetrack'
- Suppression of depolarization effects
 Beam trajectory can be made to follow
 a Figure-8 path (by reversing field
 directions in opposing droplet arcs)

- Beams of different energies moving in the opposite direction through the linac – orbit separation needed to avoid parasitic collisions.
- As linac length and number of passes are increased, the BBU threshold can be a problem.
- Travelling 'clearing gaps' to alleviate ion trapping – No solution found

Thomas Jefferson National Accelerator Facility

Summary

- High luminosity Linac-Ring option ERL
 - RF power nearly independent of beam current.
- Multi-pass linac Optics in ER mode
 - Choice of linac RF and Optics 800 MHz SRF and 130⁰ FODO
 - Linear lattice: 3-pass 'up' + 3-pass 'down'
- Arc Optics Choice Emittance preserving lattices
 - Quasi-isochronous lattices
 - Flexible Momentum Compaction Optics
 - Balanced emittance dilution & momentum compaction
- Complete Arc Architecture
 - Vertical switchyard
 - Matching sections & path-length correcting 'doglegs'
- 'Dogbone' ERL Option

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Special Thanks to:

Frank Zimmermann

Daniel Schulte

and

Erk Jensen

Thomas Jefferson National Accelerator Facility

Backup Slides

Thomas Jefferson National Accelerator Facility

Linac-Ring: Dimensions/Layout

Linac-Ring: Dimensions/Layout

