

Cryogenics of the 60 GeV LHeC

Friedrich Haug

CERN

Technology department

LHeC Workshop, Chavannes-de-Bogis, Jan. 20-21, 2014

Contents....

...largely based on the LHeC Conceptional Design Report

- ERL layout (Linac-Ring)
- Cryomodule principle
- Power consumption of ERL
- Parameters for cryo power
- <u>Ring-Ring</u> version
- Comparison with CERN accelerator plants
- Detector cryogenics

Linac-Ring

LHeC

Detector

(ERL)

1/20/20 France

Two e-accelerator versions: Linac-Ring, Ring-Ring

Haug,

CMS

LHC collider

ATLAS

Ring-Ring

CERN Meyrin

Injector

Switzerland

Cryomodule configuration LH_O

Proposal based on CDR

Cryomodule

8 cavities + Quad ~ 15 m length 118 cryomodules

Cavities

5-cell 1.04m length > 721 MHz, CW operated Power diss. 32 W @ 2K for 21.2 MV/m (based on Qo = 2.5E10)

Proposed cryomodule configuration and cryostat similar to XFEL

Basic Lay-out

Sectorisation: Eight 250 m long strings. Eight dedicated cryoplants

Friedrich Haug, CERN

Lay-out Cryoplants

Lay-out Cryoplants

On surface

Split cold boxes (see LEP2, LHC (4.2K on surface, 2K in tunnel) Total (minimum) cooling power; 84 kW @ 4.2 K (no contingency) Cryoplants proposed 8 x 10.5 kW @ 4.2 K R&D cavities ongoing. Expectance improved Q values....

Summary Parameters (CDR)

Parameter	Value
Two linacs	${\rm length} \ 1 \ {\rm km}$
5-cell cavities	length 1.04 m
Number	944
Cavities/ cryomodule	8
Number cryomodules	118
Length cryomodule	$14 \mathrm{m}$
Voltage per cavity	$21.2 \ \mathrm{MV}$
m R/Q	285Ω
Cavity Q_0	$2.5\cdot 10^{10}$
Operation	CW
Bath cooling	2 K
Cooling power/cav.	$32 \le 2 \le 100$
Total cooling power (2 linacs)	30 kW @ 2 K

Parameter	Value
Number of Refrigerators	8
1/COP @ 2 K	700
Minimum cooling capacity/refrigerator	10 kW @ 4.5 K
· Contingency	none
Minimum total cooling power	80 kW @ 4.5 K
Grid power consumption	21 MW

- Power consumption dominated by dynamic load (CW operation)
- Power consumption inverse proportional to Qo
- Lower temperatures: increase in Qo
- Cavity frequency ... etc. (reference is made to SRF experts in this field...)

🞯 Ideal work for refrigeration 🖽

Inverse coefficient of performance

 $COP_{Inv,ideal} = 1/COP_{ideal} = COP_{ideal}^{-1}$

Units of work required to produce one unit (1 W) of refrigeration of an ideal machine. Equation used

$$\frac{W}{\dot{Q}} = \frac{T_0 - T}{T} \quad \frac{[Watts]}{[Watt]}$$

Gas	Normal boiling point [K]	Ideal work for refrigeraction [W/W]
Oxygen (O2)	90.18	2.3
Argon	87.28	2.4
Air	78.80	2.8
Nitrogen (N2)	77.36	2.9
Neon	27.09	10.1
Hydrogen (H2)	20.27	13.8
Helium-4	4.21	70.3

Power = f(parameters)

Gas	Normal boiling point [K]	Ideal work for refrigeraction [W/W]
Helium-I	4.21	70.3
Helium-II	2.0	150
Helium-II	1.8	167
Helium-II	1.6	187

But in addition Carnot efficiency becomes smaller, hence, real inverse COP unproportionally large

$$COP_{real}^{-1} = \frac{COP_{ideal}^{-1}}{\eta_{Carnot}}$$

Size, complexity and cost of refrigerators and systems increase unproportianally with decreasing temperatures

Using the LHC tunnel: Ring-Ring Version

Principle: use LHC tunnel for additonal new electron Ring accelerator

2-cell	721 MHz
Length	0.42 m
Acc. Field	12 MV/m
Operation	CW mode
Operation temp.	2 K
Dissip.	4 W

Cryomodules

nr. of cavities	8
Length	10 m

Location and number of cryomodules

CMS side	8
ATLAS left	3
ATLAS right	3

SC Cavities for the Injector

9-cell	1.3 GHz
(ILC/XFEL type)	
Length	1 m
Acc. Field	23 MV/m
Operation	pulsed mode

Cryomodules

nr. of cavities	8
Length	12.2 m
Nr. of modules	12

(exact copy of XFEL)

Ring-Ring Cryogenics

Ring-Ring Cryogenics

LEP2 (cryo for SRF cavities 5 MV/m)

4 Acc points. <u>4 Cryoplants</u> 12 kW @ 4.5 K.

<u>4.5 K bath cooling</u> (already split principle). Upgraded later for use at LHC...

LHC (cryo for sc bending magnets)

<u>8 Cryoplants</u> 18 kW @ 4.5 K + 8 cold boxes 1.8 K. Largely for LHC sc magnet cooling at <u>1.9 K</u>. Grid power consumption appr. 40 MW (with ATLAS and CMS detector cryoplants)

LHeC ERL (cryo for SRF cavities > 20 MV/m) Linac-Ring version: 2 accel. strings 1 km each. <u>8 cryoplants</u> <u>2 K bath cooling</u>, 8 x 10 kW @ 4.5 K. Grid power consumption appr. >21 MW (+ contingency...)

LHeC Ring-Ring version: 2 acceleration points (IP 1, 5), <u>4 cryoplants</u>, <u>2 K bath cooling</u>, total < 8 kW @ 4.5 K

Ring-Ring only appr. 1/10 of ERL power + use of LHC infra (= small LEP2 at 2 K)

Detector Cryogenics

SC solenoid (3.5 T) and two dipoles on one support cylinder diam. 2 m, 9.5 m length Cryoplant: 300 W @ 4.5 K

Liquid Argon calorimeter 12 m3 Corresponds to appr. 1/8 of Atlas Calorimeter Volume

Detector Cryogenics

Detector Cryogenics

SC bus integrated in transfer line

SC Solenoid and dipoles

Principle flowscheme

He Cryostat and phase separator

Redundant centrifugal pumps

Similar to Atlas Test Facility Hall 180

Thanks for your attention