

First Thoughts on the Silicon Tracker

LHeO

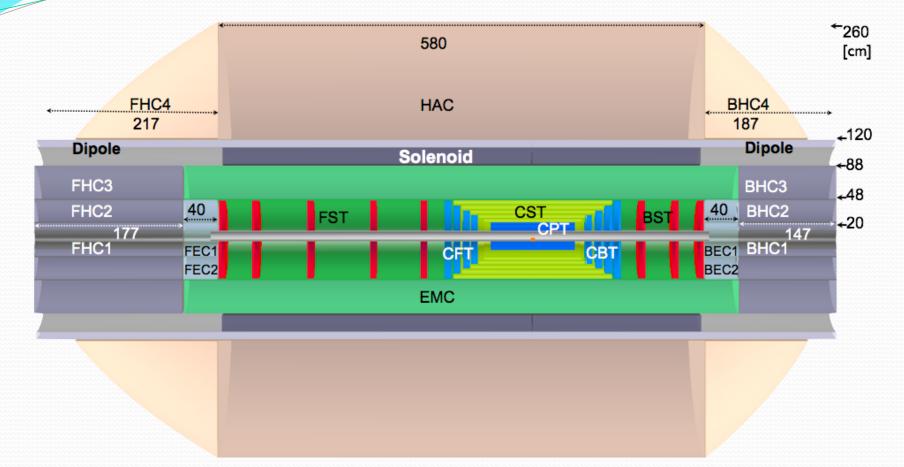
Overview

- Tracking System Requirements
 - CDR 'snap-shot'
- ATLAS Phase-2 Tracker Development
 - Local Supports
 - Pixels
 - Central Strip Tracker
 - Forward Strip Tracker
 - (HV)CMOS
- Conceptual LHeC Tracker Geometrical Design
 - 3D CAD model
 - Areas, Module Counts, Channel Counts
- Global Design Issues
- Summary & Conclusions

CDR Detector Performance Requirements

- High resolution tracking system
 - excellent primary vertex resolution
 - resolution of secondary vertices down to small angles in forward direction for high x heavy flavor physics and searches
 - precise p_t measurement matching to calorimeter signals (high granularity), calibrated and aligned to 1 mrad accuracy

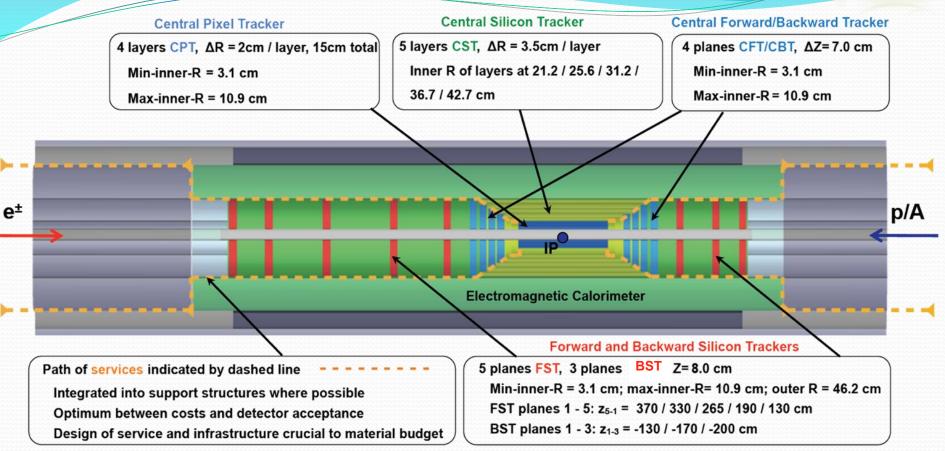
The Calorimeters


• electron energy to about 10%/ \sqrt{E} calibrated using the kinematic peak and double angle method, to 0.1% level

Tagging of γ 's and backward scattered electrons -

- precise measurement of luminosity and photo-production physics
- hadronic energy to about 40%/ \sqrt{E} calibrated with p_{t_e}/p_{t_h} to 1% accuracy
- Tagging of forward scattered proton, neutron and deuteron diffractive and deuteron physics
- Muon System

18/01/2014


Baseline Detector (CDR)

- High acceptance Silicon Tracking System
- Liquid Argon EM Calorimeter inside solenoid
- Iron-Scintillator Hadronic Calorimeter
- Forward Backward Calorimeters: Si/W Si/Cu

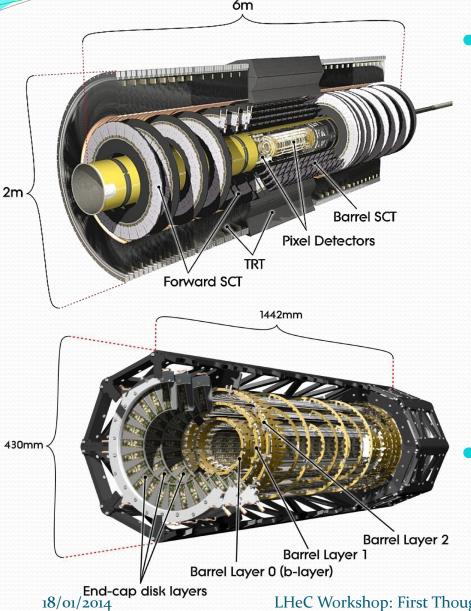
18/01/2014

Compact Silicon Tracking

- Very compact design, contained within the electromagnetic calorimeter:
 - small radius due to constraints from the magnet
- More coverage in the proton direction:
 - dense forward jet production (down to 1° in θ)
- Services and Infrastructure need detailed engineering design

CDR Tracking System Geometry

Central Barrel	CPT1	CPT2	CPT3	CPT4	CST1	CST2	CST3	CST4	CST5
Min. Radius R $[cm]$	3.1	5.6	8.1	10.6	21.2	25.6	31.2	36.7	42.7
Min. Polar Angle $\theta^{[0]}$	3.6	6.4	9.2	12.0	20.0	21.8	22.8	22.4	24.4
Max. $ \eta $	3.5	2.9	2.5	2.2	1.6	1.4	1.2	1.0	0.8
ΔR [cm]	2	2	2	2	3.5	3.5	3.5	3.5	3.5
$\pm z$ -length $[cm]$	50	50	50	50	58	64	74	84	94
Project Area $[m^2]$	1.4				8.1				
Central Endcaps	CFT4	CFT3	CFT2	CFT1		CBT1	CBT2	CBT3	CBT4
Min. Radius R $[cm]$	3.1	3.1	3.1	3.1		3.1	3.1	3.1	3.1
Min. Polar Angle $\theta^{[0]}$	1.8	2.0	2.2	2.6		177.4	177.7	178	178.2
at z [cm]	101	90	80	70		-70	-80	-90	-101
Max./Min. η	4.2	4.0	3.9	3.8		-3.8	-3.9	-4.0	-4.2
Δz [cm]	7	7	7	7		7	7	7	7
Project Area $[m^2]$	1.8					1.8			
Fwd/Bwd Planes	FST5	FST4	FST3	FST2	FST1		BST1	BST2	BST3
Min. Radius R $[cm]$	3.1	3.1	3.1	3.1	3.1		3.1	3.1	3.1
Min. Polar Angle $\theta^{[0]}$	0.48	0.54	0.68	0.95	1.4		178.6	178.9	179.1
at z [cm]	370	330	265	190	130		-130	-170	-200
Max./Min. η	5.5	5.4	5.2	4.8	4.5		-4.5	-4.7	-4.8
Outer Radius R [cm]	46.2	46.2	46.2	46.2	46.2		46.2	46.2	46.2
Δz [cm]	8	8	8	8	8		8	8	8
Project Area $[m^2]$			3.3					2.0	

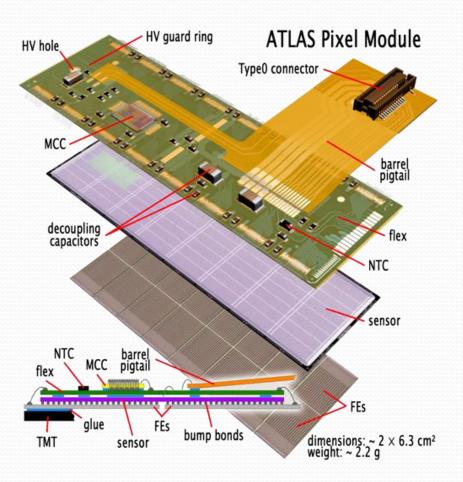

18/01/2014

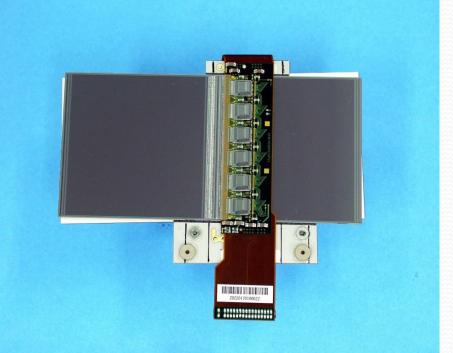
ATLAS Phase-2 Tracker Upgrade

- Geometry & basic parameters
 - Current ATLAS & Phase-2 Inner Detector upgrade
- Concept of "local supports"
- Overview of technical development for:-
 - Barrel Pixel staves
 - Forward Pixel Disks
 - Barrel Strip Staves
 - Forward Strip Disks

Brief comment on (HV)CMOS

Current ATLAS Tracking

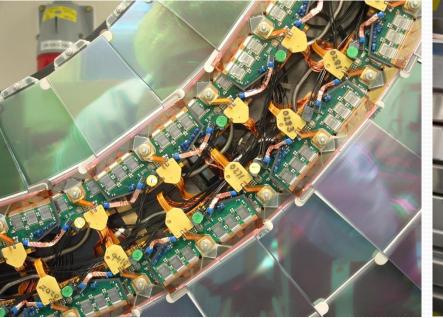


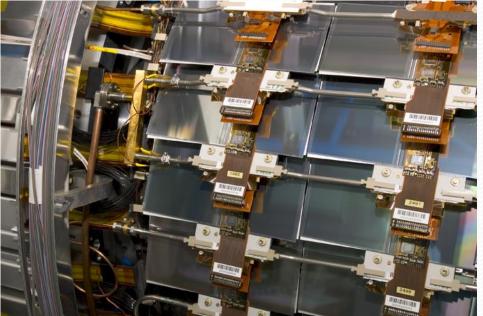

- SCT
 - **61m**² of silicon with 6.2 million readout channels
 - **4088** silicon modules arranged to form 4 Barrels and 18 Disks (9 each end)
 - Barrels : 2112 modules (1 type) giving coverage $|\eta| < 1.1$ to 1.4
 - Endcaps : 1976 modules (4 types) with coverage 1.1 to 1.4 $< |\eta| < 2.5$
 - 30cm < R < 52cm
 - Space point resolution r ~16µm / Z~580µm

Pixels

- 1744 Pixel Modules on three barrel layers and 2 x 3 discs covering 1.7m²
- 8oM readout channels

Module Technologies

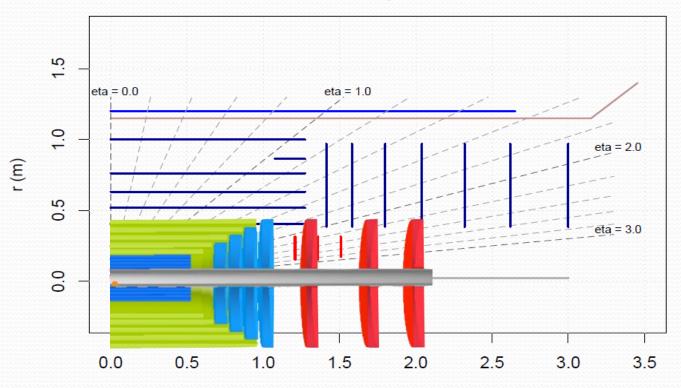






18/01/2014

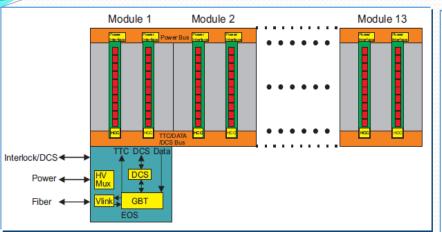
Mechanics & Services

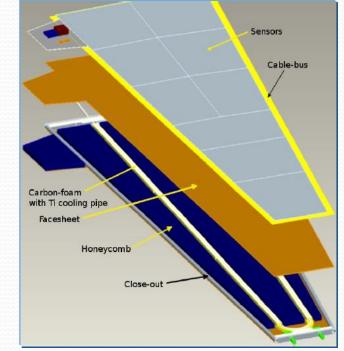


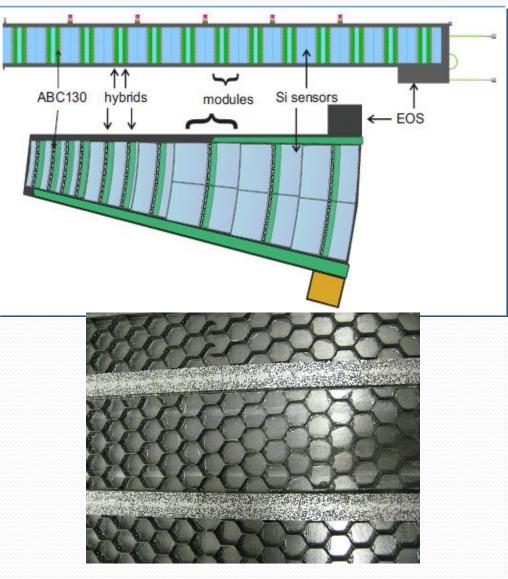
18/01/2014

0

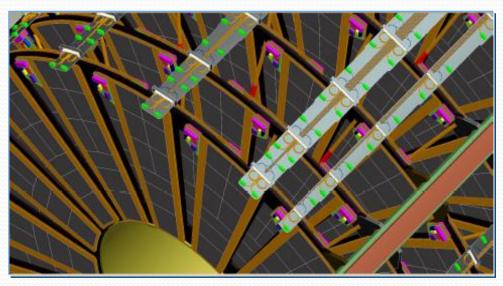
Phase-2 Developments

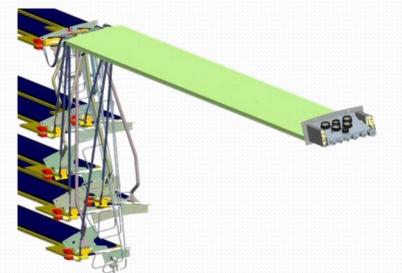


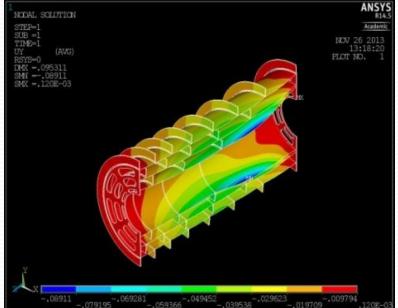

• All silicon Inner Detector


- 4(pixel) + 5(strip-pairs) = 14 hits
- Strips: 200m² (5 ¹/₂ barrel layers + 2x7 disks) (x3.3)
- Pixels: 8 m² (**x4.7**)

Local Supports





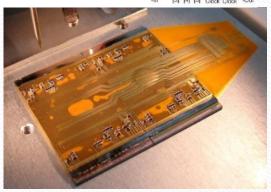


18/01/2014

Global Supports & Services

18/01/2014

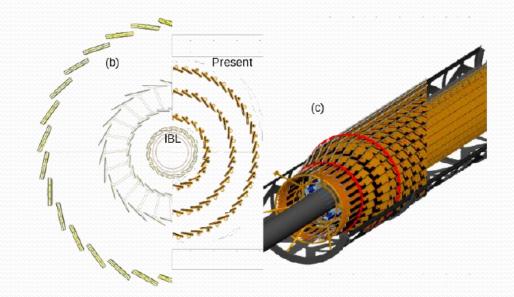
Stave Prototyping


12-module stave (with DCDC powering) completed December 2013

Pixels

20 mm 00 00 C OC 00 00 00 00 00 C Digital Pixel Regis Hit Prod Hamming Encoder Buffer Hit Processing Hit Pre C 00 00 336 00 00 00 00 lo End of Digital Columns Logic LIT.Token Read lata 25t End of Chip Logic Data Output Hamming Data Format/ Hamming FIFO Hamming Decoder Block Decoder Compress Encoder 8b10b Encoder Configuration Current Bias EFUSE Serializer DACs Ref Generator Register Bypass Scar Data Voltage Shunt DC-DC Power Ref. LDO Conv. InstCLP Command Decoder **IOMux** PLL Pad Frame

FE-I₄ pixel ASIC


- 20 X 17mm
- 80 columns x 336 rows

Double-module

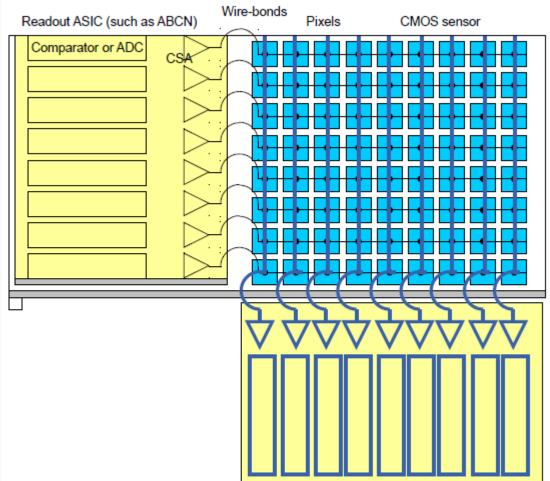
• 2 x FE-I4

Quad Module

4 x FE-I4

(HV)CMOS

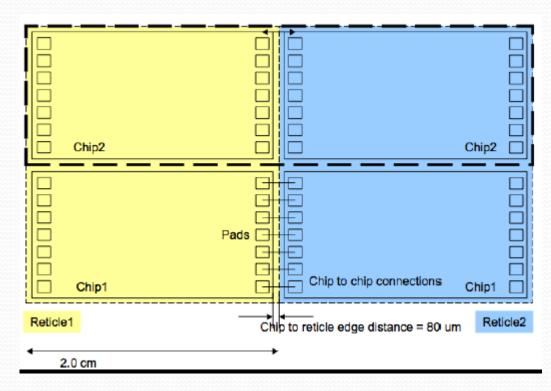
- 'Hot Topic' within ATLAS (cost reduction)
 - industrialised processes
 - large wafer sizes
 - Cheap(er) interconnection technology


Daniel Muenstermann AUW-Nov'i3

- Idea: explore industry standard CMOS processes as sensors
 - commercially available by variety of foundries
 - large volumes, more than one vendor possible
 - but: application of **drift field** required for sufficient rad-hardness
 - → requires careful choice of process and design
 - 8" to 12" wafers
 - low cost per area: "as cheap as chips" for large volumes
 - wafer thinning quite standard
 - usually p-type Cz silicon
 - thin active layer, helpful to disentangle tracks in boosted jets and at high eta
 - requires low capacitance → small pixel
- Basic requirement: Deep n-well (→ allows high(er) substrate bias)
 - existing in many processes, e.g. even 65nm (!)

LHeo

Strip-like Readout

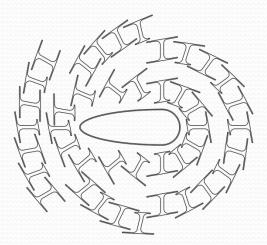

- Signals are digital so multiple connections are possible, e.g.
 - "crossed strips"
 - strips with double length but only half the pitch in r-phi
- Multiple combinations to resolve ambiguities – pixel precision
 - with only ~4N
 - channels instead of N²

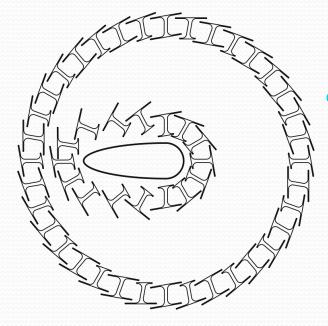
Stitching

LHec

- Future Reticule sizes limited to ~ 20 x 25mm
- Viable large area devices require 'stitching'
 - Multiple instances of same circuit
 - Low complexity should ensure very high yield

(HV)CMOS Outlook


- Task-force established late 2013 to assess whether it is likely that HVCMOS technologies could be developed in time for ATLAS mass production (2016-2020)
 - Financial Resources
 - Effort
 - How to keep current programme going until HVCMOS is demonstrated fully
- Looks tight for ATLAS but I would expect (HV)CMOS will be a mature technology for experiments building in the 2020s
 - Likely to have a major impact on detector implementation!


Conceptual LHeC Tracker Realisation

Constraints

- Use ATLAS Phase-2 tracker candidate detector technologies and map onto LHeC CDR geometry
- In particular explore concept of 'local supports'
- Describe details of
 - Central Pixel Tracker (CPT)
 - Central Strip Tracker (CST)
 - Central Forward/Backward Tracker (CFT/CBT)
 - Forward and Backward Silicon Trackers (FST/BST)
- Summarise area, modules, etc... compare to current ATLAS and upgrade. Point out differences to CDR.

Central Pixel Tracker (CPT)

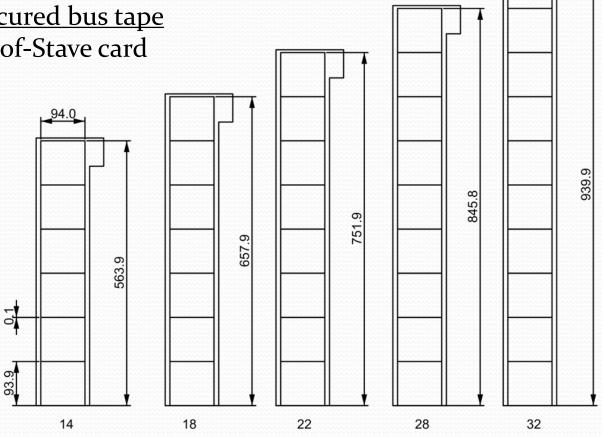
- Based on emerging ATLAS pixel design employing "I-beam" structures
 - Quad/doublet I-beam optimal if R2/R1 ~ 2
 - Mix of 2-types of stave
 - quad/quad and quad/doublet modules
 - R-phi overlaps can be significant
 - 2 options studied
 - 4 incomplete concentric ring
 - 42 staves / 2.5m² / 7000 FE-I4
 - 2 complete rings
 - 52 staves / 3.1m² / 8700 FE-I4 (24% more area)

Central Strip Tracker (CST)

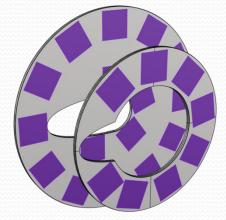
- 5 layer design based on emerging ATLAS strip stave development (without considering global supports & services!)
 - 14, 18, 22, 28 & 32 staves / end x 2 ends = 228 (1/2 ATLAS)
 - Non-quadrant symmetry!
 - Side-mounted End-of-Stave readout to minimise Z gaps

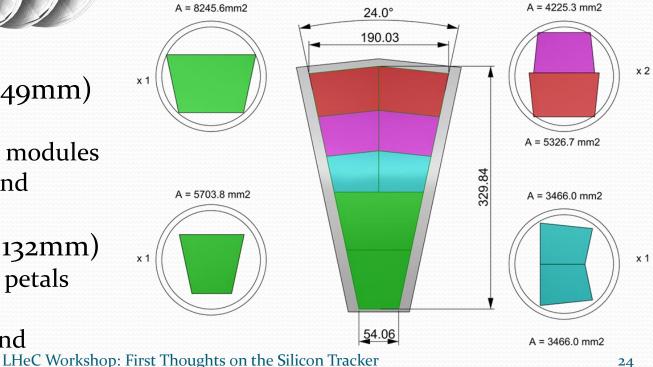
Central Strip Tracker (2)

Z coverage through <u>integer</u> numbers of <u>identical modules</u> on both sides


- Axial / stereo
- 94x94mm sensors
- Power & I/O via <u>co-cured bus tape</u>
- Side-mounted End-of-Stave card

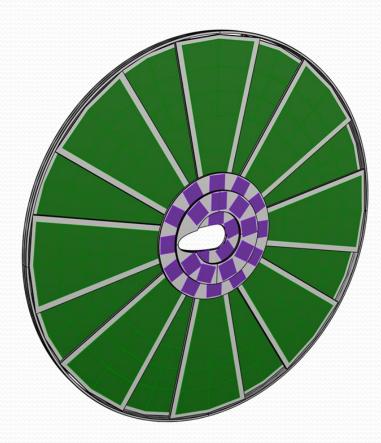
Statistics


- 228 staves
- 3,832 modules
- Area = 34m²


• NB

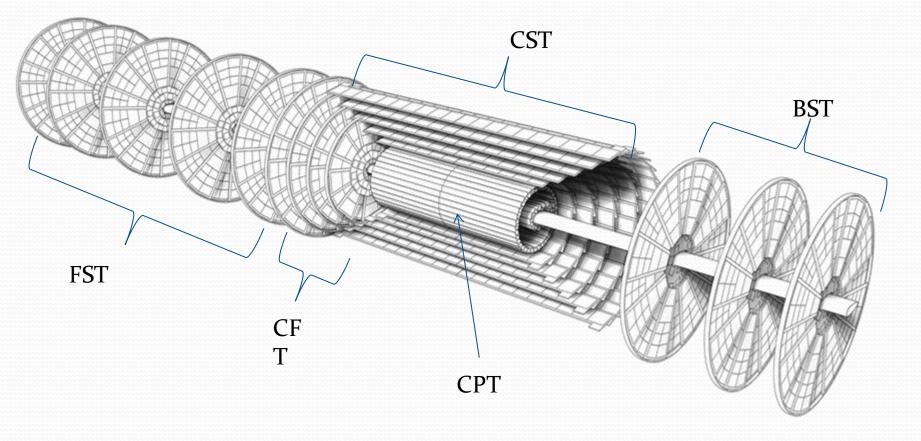
- L1 too short
- L2-4 too long
- L5 OK !

Central Forward (Backward) Tracker (CFT/CBT)

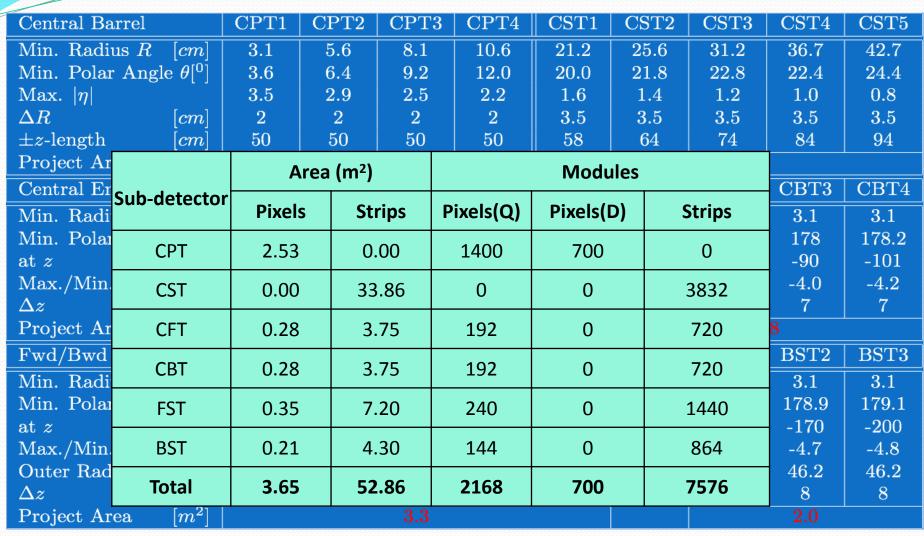


Split in to 2 parts

- Inner pixels (r<149mm)
 - quad modules
 - 3 rings: 8, 16, 24 modules
 - Area: 0.28m² / end
- Outer strips (r> 132mm)
 - 18 double-sided petals
 - 2 to 5 rings
 - Area: 3.75m² / end


18/01/2014

Forward (Backward) Silicon Trackers (FST/BST)


- Modelled as being identical to largest CFT/CBT disks
 - 3 pixel rings (r<149mm)
 - 5 strip rings (r>132mm)
 - Outer radius 457mm (should be 462)
- FST (5 disks):
 - Pixel area = 0.35m²
 - Strip area = 7.2m²
- BST (3 disks): Treated as being the same here (is it worth inventing something new?)
 - Pixel area = 0.21m²
 - Strip area = 4.3m²

General View

NOTE: CBT not shown for clarity

Summary Table

Global Design Issues

- Global supports and services
 - Staggered barrel looks challenging
 - Most barrel systems end up 'square ended'!
 - One could imagine extending ATLAS stave co-curing technology to fabricating support cones with integrated services
 - ATLAS uses concept of 'services modules' tightly integrated package (cooling, electrical & optical services)
 - Rapid installation (reduces on-surface assembly time)
 - Compact unit (optimises space)
- Environment (Temperature, humidity & gas, G&S)
 - Active thermal enclosures space ?
 - Humidity barriers & seals around services
 - Grounding & shielding scheme often comes late & requires 'on the fly' implementations – need to address early in design phase
- Access & maintenance requirements
 - eg. ATLAS allows removal of pixel sub-system without interfering with strips (segmentation in R not Z)
 - Multiple 'tubes' & associated material in far forward direction

LHec

Conclusions & Outlook

- A first-go geometrical implementation of the CDR layout made using ATLAS Phase-2 upgrade prototype designs as motivation
 - Looks feasible and a reasonable basis for further work
 - Not a unique solution developments of CMS/ALICE tracking system upgrades would be equally valid
- Allows calculation of module numbers & silicon area based on realistic assumptions
 - Active areas of some sub-components disagree with table from CDR
 - Implementation of CPT is quite far from CDR design
- Global supports & Services
 - Not addressed here but would have a major impact on any design