

The ALICE Facility @ Daresbury Status & Plans

Peter McIntosh (STFC Daresbury Laboratory) LHeC Workshop 20 – 21 Jan 2014

ALICE Machine Overview

ALICE Parameters (Current)

Parameter	Operating Value	Comments	
Injector Energy	6.5 MeV	Limited only by the required ratio of full/injector beam energies	
Total beam energy	12.0 – 26.0 (27.5) MeV	Various setups; upper value limited by FE in the main linac cavities.	
RF frequency	1.3 GHZ		
Bunch repetition frequency	up to 81.25 MHz (variable)	Use of burst generator in PI laser system;	
Train Length	0 - 100 μs		
Train repetition frequency	1 - 20 Hz		
Compressed bunch length	<1 ps rms	Measured with EO technique	
Bunch charge (standard)	40 pC @ 81.25MHz, 60pC @ 16MHz and 40MHz	Limited by beam loading; Q=60pC is a standard bunch charge for FEL and THz operation.	
Bunch charge (potential)	~200pC	Allowed by achievable QE of 2.5-3.0%; requires digital LLRF with feed-forward ability in buncher/booster systems	
Energy Recovery Rate	>99%	Measured	

Historical ALICE Achievements

MilestoneDateFirst ALICE (ERLP) meeting heldMay 2003500kV DC HVPS deliveredDec 1
First ALICE (ERLP) meeting heldMay 2003500kV DC HVPS deliveredDec C
500kV DC HVPS delivered Dec C
4K cryoplant commissioning starts
First gun operation starts
SRF cryomodules arrive
First electron beam ger
2K cryoplant creating problem repair to facted rep-rate CN
SRE hems over brazing valarine (return (reduce new 2006
sical propies due ar failure (reweld faile cavitie of adiente Oct 2007
Technic rame tuner to sel ED Booster Streduceu 9 Dec 2008
HV cer helium varing in De avities (Feb 2009
SKI boosle' Nov 2009
Shipsive Sion in Jus with cell exposure to THz radiation Apr 2010
Field entry FEL radiation produced Oct 2010
First EMMA acceleration demonstratedApr 2011
http://stfc.ac.uk/ASTeC/Programmes/Alice/General/36020.aspx

Alice

ALICE Current Status

• Last main accelerator physics and science programme on ALICE was successfully completed at the end of 2012.

Commissioning of the new SRF cryomodule on ALICE is underway

logy

Photon Beam Exploitation

•

•

ALICE in 2014 & Beyond

- New grant for using ALICE IR FEL in cancer diagnostic studies has been received - SCANCAN (Critical Mass Award from EPSRC):
 - June 2013 May 2016
- SNOM based programme led by Liverpool University:

"Towards disease diagnosis through spectrochemical imaging of tissue architecture"

- The grant allows ALICE operation for 3 years (three months per year).
- Opportunity for other project applications to increase the length of ALICE operation.

ALICE Near Term Developments

- New feedback system to ensure stability of FEL wavelength during SNOM scans.
- Improved diagnostic system for ALICE orbit monitoring and correction.
- Upgrade of the LLRF system to improve short-term and long-term machine stability.
- Efforts to extend the IR wavelengths range towards longer ~20µm wavelength:
 - Opens up more opportunities.
- Upgrade IR FEL transport beamline to improve efficiency at longer wavelengths.
- New SRF cryomodule is expected to allow ALICE operation at higher beam energy of up to 35 MeV:
 - Extension to shorter IR FEL wavelengths range.

New SRF Cryomodule Integration on ALICE

 - 'Plug Compatible' with existing cryomodule.

Science & Technology Facilities Council

New SRF Cryomodule

mm

BERKELEY LAB

Parameter	ALICE	Target	
Frequency (GHz)	1.3	1.3	
Number of cavities	2	2	
Number of Cells per Cavity	9	7	
Cavity Length (m)	1.038	0.807	
Cryomodule Length (m)	3.6	3.6	
R/Q (Ω)	1036	762	
E _{acc} (MV/m)	12 - 15	>20	
CM Energy Gain (MeV)	26 >32		
Q°	<5 x10 ⁹	>1x10 ¹⁰	
Q _{ext}	4 x 10 ⁶	$4 \times 10^6 - 10^8$	
Max Cavity Fwd Power (kW)	10 SW	20 SW	

Alice

Cryomodule Integration

Cavity

Tuner

HOM Absorber

FPC

String Integration

Offline Testing

Cryomodule Implementation on ALICE

Alice

CM Static Heat Load at 2K

Alice

- Static heat load
 measured with all the
 input valves closed to
 ensure that only the
 boil off from the
 cryostat is measured.
- 0.6 g/S total mass flow Linac + Booster.
- ⇒ 0.3 g/S per module.
- ⇒ ~6.2 W per cryomodule

Cryogenic Performance

Parameter	Unit	Spec	Measured Value	
Base temperature	K	2.0	2.0	
Static heat load	W	15	6.2	Single shot mode at 2K
Static base heat load	g/S	1.5	2.5	With flash gas (additional heat leak from external components)
Pressure stability	mbar	±1.0	± 0.05	at 2K
HOM Intercepts	K	< 20	13.5 < T < 15.5	CKT -1 at GHe 2.0 barA
HOM Intercepts	K	< 90	89 < T < <mark>99</mark>	CKT -2 at GHe 2.0 barA
Shield	K	< 90	89 < T < <mark>99</mark>	CKT -2 at GHe 2.0 barA
Cavity Frequency	GHz	1.3	1.3	
Tuning range	KHz	± 350	± 350	

cimology

Facilities Counci

Dynamic performance to be measured

Static performance similar to original ALICE LINAC

Cavity Conditioning

- Q_{ext} set to original Linac settings:
 - LC1 6.4 x 10⁶
 - LC2 8.3 x 10⁶
- Initial conditioning reached:
 - LC1 10.8 MV/m
 - LC2 12.5 MV/m
- 16 MV/m min gradient required
- LC1 Gradient ~0.8MV/m
- Phase set 40⁰
- Microphonic issues discovered with analogue LLRF:
 - Phase set limit of 60° reached at low gradients
 - 71Hz oscillation seen on the phase set under CW conditions

LC1 (CW) Gradient ~0.8MV/m 71Hz oscillation

LC2 Gradient 7MV/m Phase set 60⁰

No FE radiation observed!

Microphonic Analysis – LC1 and LC2

Seismic Ground Tests

Vertical measurements 2005

- Seismic measurements performed next to the Linac and 2K pump platform.
- Greater than an order of magnitude degradation seen for modes >20 Hz (including 71Hz):
 - 2013 Vertical displacement 10⁻⁶µm²/Hz
 - 2005 Vertical displacement <10⁻⁷µm²/Hz

Accelerometer Measurements

Accelerometer located on pump mount

- Accelerometer
 - measurements of the 2K pump system:
 - ⇒ Confirmed the source of the 71Hz vibrations from the backing pumps.
 - ⇒ Cryo roots pumps not the source.

2K cryo backing pumps ON

2K cryo backing pumps OFF

ALICE Cryogenic Pump Configuration

Pump Investigations

- Low pressure in pump frame shock absorbers:
 - Pressure had reduced to 4 Bar
 - ⇒ Increased to max 6 Bar
- Distortion of platform shock absorbers observed:
 - Absorbers nearest the Linac had deformed likely due to radiation damage.
 - \Rightarrow Presently being replaced.

Pump Investigation (Cont)

- Investigation of pumps revealed a horizontal vibration due to backing pumps.
- ⇒ Bearings have been replaced:
 - Pump bearings
 - Pulley bearings
 - Motor bearings
- Pump system appears to be much quieter.
- Seismic and accelerometer measurements to be repeated once the system has been returned to a full operational status.
- Cryomodule retesting expected to restart this week.

Summary

- ALICE remains Europe's only operating ERL test facility, employing:
 - DC photo-injector
 - SRF linacs
 - IR-FEL
- Facility has recently secured a new 'lease of life', with a 3year grant award for cancer diagnostic studies.
- Beam stability improvements being made to improve FEL capability.
- New SRF cryomodule undergoing validation, to increase beam energy, efficiency and operability.

As a dedicated ERL test facility, ALICE maintains a unique capability globally for ERL scientific and technology R&D.

LHeC R&D Opportunities Using ALICE

- DC HV gun based injector physics:
 - Photocathode development
 - Low energy beam transport optimisation
- Energy recovery with various energy spreads and spectra:
 - Emulate e-beam disruption at IP
- Beam halo effects and mitigation
- Synchronisation R&D:
 - DLLRF systems
 - Optical distribution system
- BBU studies:
 - Induce BBU with small time constant ~ 10 -100us
- Instrumentation and beam diagnostics development:
 - EO profile monitors
 - Beam arrival monitors
 - Beam phase and position monitors

