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Objective:
Give an overview of long-range wakefields in the LHeC

• Why is difficult to compute them in recirculating machines;
• Strategy adopted;
• State of the simulations;
• Impact of many parameters (recombination pattern, detuning, beam-beam)
on beam stability;
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Long-Range Wakefields and Higher Order Modes
• The field in a cavity has many Higher Order
Modes (HOMs) of oscillation.

• HOMs are excited by bunches passing
through the cavity and affect the followings
⇒ long-range wakefields.

• Dipolar modes are particularly bad as they are
strong and easily excited by orbit displace-
ments.

• SPL cavities: 5 cells design at 720 MHz.
• List of HOMs from M. Schuh, all Q-values
at TESLA worst.

• Amplitudes are scaled to 802 MHz ∝ f 3

# f [GHz] A [V/C/m2] Q

1 0.9151 9.323 1e5
2 0.9398 19.095 1e5
3 0.9664 8.201 1e5
4 1.003 5.799 1e5
5 1.014 13.426 1e5
6 1.020 4.659 1e5
7 1.378 1.111 1e5
8 1.393 20.346 1e5
9 1.408 1.477 1e5

10 1.409 23.274 1e5
11 1.607 8.186 1e5
12 1.666 1.393 1e5
13 1.670 1.261 1e5
14 1.675 4.160 1e5
15 2.101 1.447 1e5
16 2.220 1.427 1e5
17 2.267 1.377 1e5
18 2.331 2.212 1e5
19 2.338 11.918 1e5
20 2.345 5.621 1e5
21 2.526 1.886 1e5
22 2.592 1.045 1e5
23 2.592 1.069 1e5
24 2.693 1.256 1e5
25 2.696 1.347 1e5
26 2.838 4.350 1e5
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The LHeC electron facility

• The current in the linacs is 6 times the one in the injector, arcs, dump;
• Because of recombination, the train structure differs from the injection one;
• Can not perform a straightforward global computation of wakefields effect.
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Long-Range Wakefield in Complex Topologies (I)
Goal → Reduction to a local problem: interaction bunch-mode in a single cavity

HOMs are represented as complex numbers: z = ρe iθ

• Time evolution: z(t + dt) = z(t) exp
(
− ω

2Q
dt

)
︸ ︷︷ ︸

damping

exp
(
iωdt

)
︸ ︷︷ ︸

rotation

• Bunch → mode interaction:

=(z) = =(z0) + Ne ALcav δx

• Mode → bunch interaction:

x ′ = x ′0 +
e <(z)
γme c2

Iterated over all the HOMs of the cavity.
V

V̇

ρ
θ
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Long-Range Wakefield in Complex Topologies (II)
Requirement → Correct propagation of bunches in the lattice (dedicated tracking code).

• Description of multiple beamlines and their interconnections;
• Correct routing of bunches in the correct beamline based on their transversal
position;

• Preservation of bunch order after recombination;
• Element timing is obtained from the bunch being tracked.

2

Compute the phase of
the accelerating field

7 6

Apply kicks

Read bunch timer

Read bunch properties

Compute 
wake evolution

Compute 
wake excitation
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What is currently there in the simulation?

1008.25 m Main Linacs:
• 37 quadrupoles, 25 cm thick, arranged in a FODO lattice;
• gradients scale linearly from 0.21 T/m to 7.88 T/m;
• 16 cavities between each quad, total 576 cavities per linac.

341.75 m straight sections after each linac:
• will be necessary for SR loss compensation, matching, etc...
• currently as an identity matrix, but contribute to bunch timing;
• common to all bunches.

Six ∼ 3150 m return arcs:
• lengths are matched to obtain the desired phase slippage;
• no optics yet, but flip the sign of particle angles;
• the highest energy arc contains the IP (possible to introduce the beam-beam
effect).

1200 periods at 25 ns = 8994 m in total.
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Beam Parameters used in the simulation

Proton collision Ion collision
Injection Energy 300 MeV
Bunch Spacing 25 ns 100 ns

Particles per bunch 2e9 4e9
Normalised RMS Emittance 50 µm

IP β function 0.12 m
Injection βx 11.5 m
Injection βy 99.0 m
Injection αx 0.43
Injection αy -2.71

Injection size (σx) 1.0 mm
Injection size (σy ) 2.9 mm

• Injection Twiss Functions are specified at the entrance of the first quadrupole
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Energy ramp
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Betatron functions
Achieved through minimisation of β/E
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Inspection of beam stability

• Fill the machine with perfectly aligned bunches;
• Enter a misaligned bunch (typically horizontally: 1σx);
• Keep injecting aligned bunches;
• Monitor the amplitude of bunches at dump;
• Verify the damping of the excitation introduced by the misaligned bunch.
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Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2 3

4 56 45 6

• Pattern 162435 is bad!
• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1

2 3

4 56 45 6

• Pattern 162435 is bad!
• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2

3

4 56 45 6

• Pattern 162435 is bad!
• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2 3

4 56 45 6

• Pattern 162435 is bad!
• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2 3

4

56 45 6

• Pattern 162435 is bad!
• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2 3

4 5

6 45 6

• Pattern 162435 is bad!
• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2 3

4 56

45 6

• Pattern 162435 is bad!

• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2 3

4 56 45 6

• Pattern 162435 is bad!

• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2 3

4 56

4

5 6

• Pattern 162435 is bad!

• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2 3

4 56

45

6

• Pattern 162435 is bad!

• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (I)

According to the lengths of the arcs, bunches at different turns can be placed into
different RF buckets.

t

1 2 3

4 56

45 6

• Pattern 162435 is bad!
• Pattern 152634 is better!

12/23



Introduction Wakefields Model LHeC Model Results Conclusions

Pattern dependency (II)
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Detuning of the cavities
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Impact of Detuning
• 351 machines with a detuning factor of 1e − 3 have been simulated.
• The distribution of the slopes of the amplitudes is shown:

slopes0
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Gaps for Ion Cleaning
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Linear Beam-Beam effect
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Linear vs Non Linear Beam-Beam effect

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  0.5  1  1.5  2

A
m

p
lit

u
d
e

time [ms]

Linear vs Non-Linear Beam Beam

linear
non linear

18/23



Introduction Wakefields Model LHeC Model Results Conclusions

Phase advance in the Final Focus

Transport of the beam from the end of Linac 1 to the IP is done with the matrix:
√

βIP
βL

(cosψ + αL sinψ)
√
βIPβL sinψ

αL−αIP√
βIPβL

cosψ − 1+αIPαL√
βIPβL

sinψ
√

βL
βIP

(cosψ − αIP sinψ)


And similar to go back into Linac 2.

• The phase advance ψ does not affect the shape of the beam,
• but it determines how the average offset and angle mix together.
• A scan of this parameter has been done.
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Phase advance from Linacs to IP (II)
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Stability of a Jittering Beam
5 million bunches with incoming offset of 0.1 σx (cuts at 0.5 σx). The beam does
not show any breakup.
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Ion collision setup
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Summary

• A model for dipolar long-range wakefields has been implemented into a tracking
code for recirculating machines.

• The FODO in the linacs has been optimized to reduce the effect of wakefields.
• Many cases have been explored verifying the impact of different bunch trains
on the stability, with the cavities scaled at the new frequency of 802 MHz.

• The impact of the beam-beam has been investigated.
• The threshold current that indefinitely sustains an excitation is reached at 25 ns
spacing with about 7e9 particles per bunch, more than tree times bigger the
charge foreseen.

• The currents foreseen for the LHeC are safe within this context.
• Additional HOM dampers could give a better margin.
• Future works may:

• add the impact of element misalignments and study a good correction;
• study the coupling with ions cloud;
• include longitudinal effects (required arc optic);
• ...

23/23


	Introduction
	dummy

	Wakefields Model
	dummy

	LHeC Model
	dummy

	Results
	dummy

	Conclusions
	dummy


