Wakefields Model

LHeC Model

Conclusions

Multibunch wakefield effects

Dario Pellegrini (CERN, EPFL)

Jan 20, 2014

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Wakefields Model

LHeC Model

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Conclusions

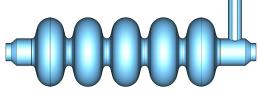
Objective:

Give an overview of long-range wakefields in the LHeC

- Why is difficult to compute them in recirculating machines;
- Strategy adopted;
- State of the simulations;
- Impact of many parameters (recombination pattern, detuning, beam-beam) on beam stability;

ntroduction	Wakefields Model	LHeC Model	Results	Conclusions
)	•000	00000	0000000000	0

Long-Range Wakefields and Higher Order Modes


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

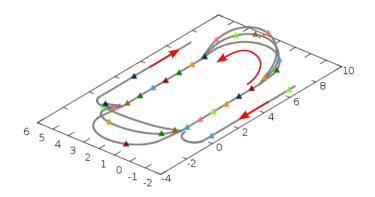
- The field in a cavity has many Higher Order Modes (HOMs) of oscillation.
- HOMs are excited by bunches passing through the cavity and affect the followings ⇒ long-range wakefields.
- Dipolar modes are particularly bad as they are strong and easily excited by orbit displacements.

Introduction	Wakefields Model	LHeC Model	Results	Conclusions
0	•000	00000	0000000000	0

Long-Range Wakefields and Higher Order Modes

- The field in a cavity has many Higher Order Modes (HOMs) of oscillation.
- HOMs are excited by bunches passing through the cavity and affect the followings ⇒ long-range wakefields.
- Dipolar modes are particularly bad as they are strong and easily excited by orbit displacements.

- SPL cavities: 5 cells design at 720 MHz.
- List of HOMs from M. Schuh, all *Q*-values at TESLA worst.
- Amplitudes are scaled to 802 MHz $\propto f^3$


#	f [GHz]	A $[V/C/m^2]$	Q
1	0.9151	9.323	1e5
2	0.9398	19.095	1e5
3	0.9664	8.201	1e5
4	1.003	5.799	1e5
5	1.014	13.426	1e5
6	1.020	4.659	1e5
7	1.378	1.111	1e5
8	1.393	20.346	1e5
9	1.408	1.477	1e5
10	1.409	23.274	1e5
11	1.607	8.186	1e5
12	1.666	1.393	1e5
13	1.670	1.261	1e5
14	1.675	4.160	1e5
15	2.101	1.447	1e5
16	2.220	1.427	1e5
17	2.267	1.377	1e5
18	2.331	2.212	1e5
19	2.338	11.918	1e5
20	2.345	5.621	1e5
21	2.526	1.886	1e5
22	2.592	1.045	1e5
23	2.592	1.069	1e5
24	2.693	1.256	1e5
25	2.696	1.347	1e5
26	2.838	4.350	1e5
E		< ≣ > < ≣ >	≣ • ગ <

Wakefields Model

LHeC Model

Results 00000000000 Conclusions O

The LHeC electron facility

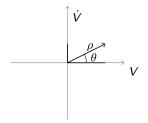
- The current in the linacs is 6 times the one in the injector, arcs, dump;
- · Because of recombination, the train structure differs from the injection one;
- Can not perform a straightforward global computation of wakefields effect.

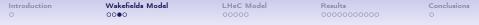
 Introduction
 Wakefields Model
 LHeC Model
 Results
 Conclusions

 0
 0000
 00000
 00000000000
 0

Long-Range Wakefield in Complex Topologies (I)

 $\mathbf{Goal} \rightarrow \mathbf{Reduction}$ to a local problem: interaction bunch-mode in a single cavity

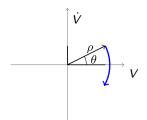

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@


Long-Range Wakefield in Complex Topologies (I)

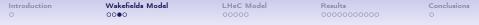
 $\textbf{Goal} \rightarrow \textbf{Reduction}$ to a local problem: interaction bunch-mode in a single cavity

HOMs are represented as complex numbers: $z = \rho e^{i\theta}$

ション ふゆ アメリア メリア しょうくしゃ


Long-Range Wakefield in Complex Topologies (I) Goal \rightarrow Reduction to a local problem: interaction bunch-mode in a single cavity

HOMs are represented as complex numbers: $z = \rho e^{i\theta}$


• Time evolution: $z(t + dt) = z(t) \exp\left(-\frac{\omega}{2Q}dt\right) \exp\left(i\omega dt\right)$

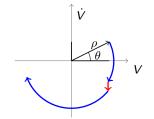
damping

rotation

・ロト ・聞ト ・ヨト ・ヨト

Long-Range Wakefield in Complex Topologies (I) Goal \rightarrow Reduction to a local problem: interaction bunch-mode in a single cavity

HOMs are represented as complex numbers: $z = \rho e^{i\theta}$


• Time evolution: $z(t + dt) = z(t) \exp\left(-\frac{\omega}{2Q}dt\right) \exp\left(i\omega dt\right)$

damping

rotation

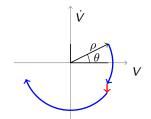
• Bunch \rightarrow mode interaction:

 $\Im(z) = \Im(z_0) + Ne A L_{cav} \delta x$

 Introduction
 Wakefields Model
 LHeC Model
 Results
 Conclusions

 0
 0000
 00000
 00000000000
 0

Long-Range Wakefield in Complex Topologies (I) Goal \rightarrow Reduction to a local problem: interaction bunch-mode in a single cavity


damping

HOMs are represented as complex numbers: $z = \rho e^{i\theta}$

- Time evolution: $z(t + dt) = z(t) \exp\left(-\frac{\omega}{2Q}dt\right) \exp\left(i\omega dt\right)$
- Bunch \rightarrow mode interaction:
 - $\Im(z) = \Im(z_0) + Ne A L_{cav} \delta x$
- Mode \rightarrow bunch interaction:

$$x' = x'_0 + \frac{e\,\Re(z)}{\gamma\,m_e\,c^2}$$

Iterated over all the HOMs of the cavity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

rotation

Introduction	Wakefields Model	LHeC Model	Results	Conclusions
0	000•	00000	0000000000	0

Long-Range Wakefield in Complex Topologies (II)

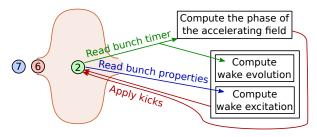
Requirement \rightarrow Correct propagation of bunches in the lattice (dedicated tracking code).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

LHeC Model

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Long-Range Wakefield in Complex Topologies (II)


Requirement \rightarrow Correct propagation of bunches in the lattice (dedicated tracking code).

- Description of multiple beamlines and their interconnections;
- Correct routing of bunches in the correct beamline based on their transversal position;
- Preservation of bunch order after recombination;
- Element timing is obtained from the bunch being tracked.

Long-Range Wakefield in Complex Topologies (II)

Requirement \rightarrow Correct propagation of bunches in the lattice (dedicated tracking code).

- Description of multiple beamlines and their interconnections;
- Correct routing of bunches in the correct beamline based on their transversal position;
- Preservation of bunch order after recombination;
- Element timing is obtained from the bunch being tracked.

Introduction	Wakefields Model	LHeC Model	Results	Conclusions
0	0000	•0000	0000000000	0

What is currently there in the simulation?

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

1008.25 m Main Linacs:

- 37 quadrupoles, 25 cm thick, arranged in a FODO lattice;
- gradients scale linearly from 0.21 T/m to 7.88 T/m;
- 16 cavities between each quad, total 576 cavities per linac.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What is currently there in the simulation?

1008.25 m Main Linacs:

- 37 quadrupoles, 25 cm thick, arranged in a FODO lattice;
- gradients scale linearly from 0.21 T/m to 7.88 T/m;
- 16 cavities between each quad, total 576 cavities per linac.
- 341.75 m straight sections after each linac:
 - will be necessary for SR loss compensation, matching, etc...
 - currently as an identity matrix, but contribute to bunch timing;
 - common to all bunches.

What is currently there in the simulation?

1008.25 m Main Linacs:

- 37 quadrupoles, 25 cm thick, arranged in a FODO lattice;
- gradients scale linearly from 0.21 T/m to 7.88 T/m;
- 16 cavities between each quad, total 576 cavities per linac.
- 341.75 m straight sections after each linac:
 - will be necessary for SR loss compensation, matching, etc...
 - currently as an identity matrix, but contribute to bunch timing;
 - common to all bunches.

 $\text{Six} \sim 3150$ m return arcs:

- lengths are matched to obtain the desired phase slippage;
- no optics yet, but flip the sign of particle angles;
- the highest energy arc contains the IP (possible to introduce the beam-beam effect).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is currently there in the simulation?

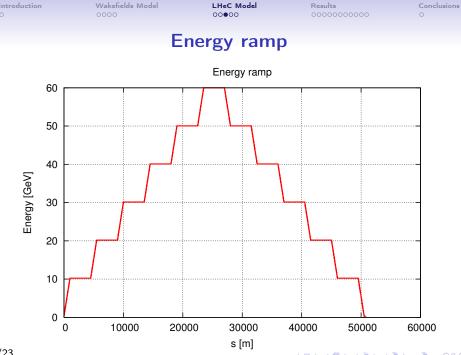
1008.25 m Main Linacs:

- 37 quadrupoles, 25 cm thick, arranged in a FODO lattice;
- gradients scale linearly from 0.21 T/m to 7.88 T/m;
- 16 cavities between each quad, total 576 cavities per linac.
- 341.75 m straight sections after each linac:
 - will be necessary for SR loss compensation, matching, etc...
 - currently as an identity matrix, but contribute to bunch timing;
 - common to all bunches.

Six \sim 3150 m return arcs:

- lengths are matched to obtain the desired phase slippage;
- no optics yet, but flip the sign of particle angles;
- the highest energy arc contains the IP (possible to introduce the beam-beam effect).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで


1200 periods at 25 ns = 8994 m in total.

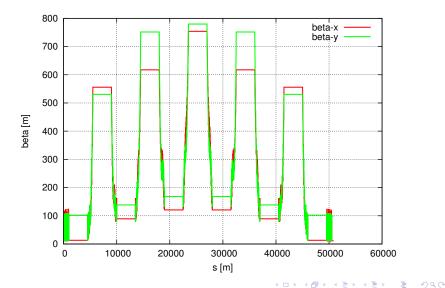
roduction	Wakefields Model	LHeC Model	Results	Conclusions
	0000	00000	0000000000	0

Beam Parameters used in the simulation

	Proton collision	Ion collision
Injection Energy	300 M	leV
Bunch Spacing	25 ns	100 ns
Particles per bunch	2e9	4e9
Normalised RMS Emittance	50 μ	m
IP β function	0.12	m
Injection β_x	11.5	m
Injection β_{γ}	99.0	m
Injection α_x	0.43	3
Injection α_{y}	-2.7	1
Injection size (σ_x)	1.0 m	ım
Injection size (σ_y)	2.9 m	ım

• Injection Twiss Functions are specified at the entrance of the first quadrupole

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

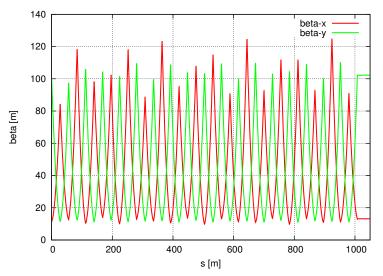

Wakefields Model

LHeC Model

Conclusions

Betatron functions

Achieved through minimisation of β/E


Wakefields Model

LHeC Model

Conclusions

Betatron functions

Achieved through minimisation of β/E

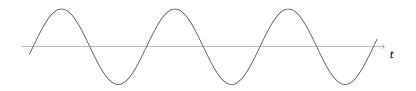
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへの

duction

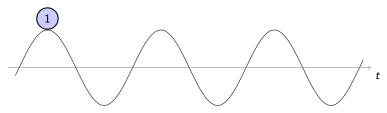
Wakefields Model

LHeC Model

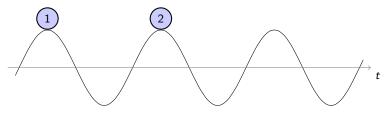
Results

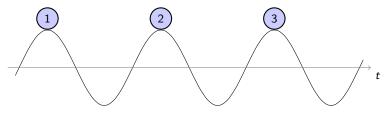

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

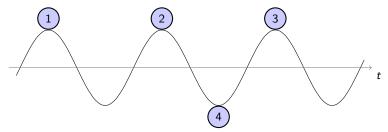
Conclusions

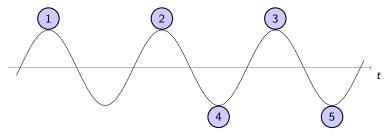

Inspection of beam stability

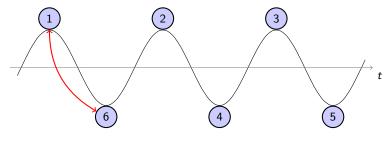
- Fill the machine with perfectly aligned bunches;
- Enter a misaligned bunch (typically horizontally: $1\sigma_x$);
- Keep injecting aligned bunches;
- Monitor the amplitude of bunches at dump;
- Verify the damping of the excitation introduced by the misaligned bunch.

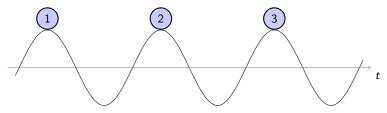


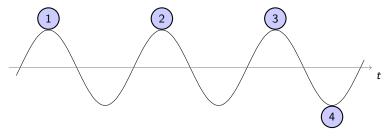


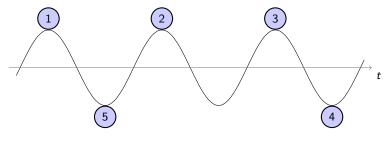


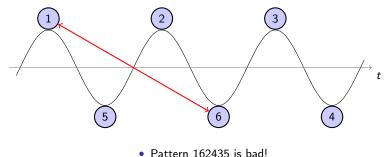




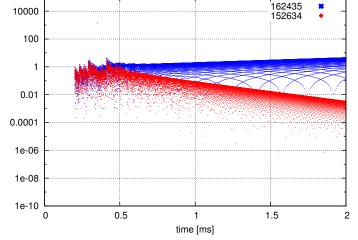



• Pattern 162435 is bad!

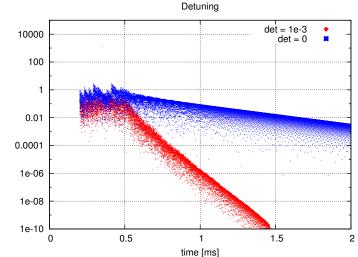

• Pattern 162435 is bad!


• Pattern 162435 is bad!

• Pattern 162435 is bad!



- Pattern 152634 is better!



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 Introduction
 Wakefields Model
 LHeC Model
 Results
 Conclusions

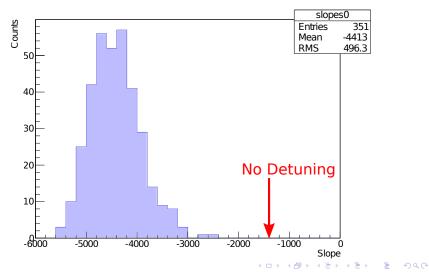
 0
 0000
 00000
 0000000000
 0

Detuning of the cavities

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣.

Amplitude

Wakefields Model


LHeC Model

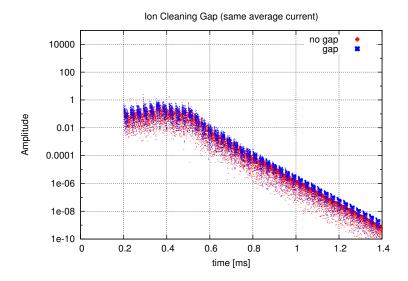
Results

Conclusions

Impact of Detuning

- 351 machines with a detuning factor of 1e 3 have been simulated.
- The distribution of the slopes of the amplitudes is shown:

Wakefields Model

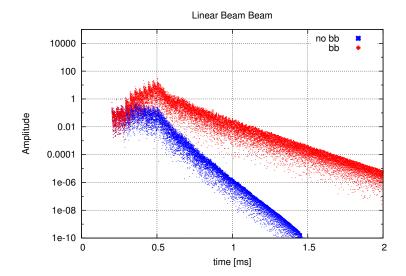

LHeC Model

Results

(□) (圖) (E) (E) [E]

Conclusions

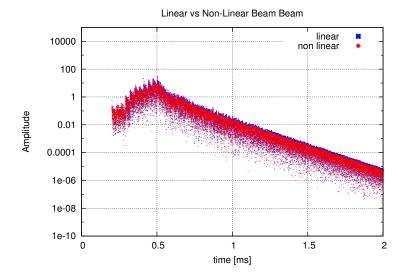
Gaps for Ion Cleaning



Wakefields Model

LHeC Model

Results 00000000000 Conclusions


Linear Beam-Beam effect

17/23

Linear vs Non Linear Beam-Beam effect

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Int	ro	du	cti	on	
0					

Wakefields Model

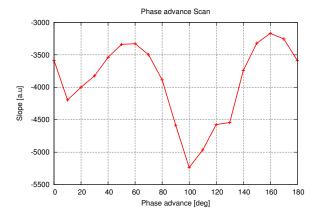
LHeC Model

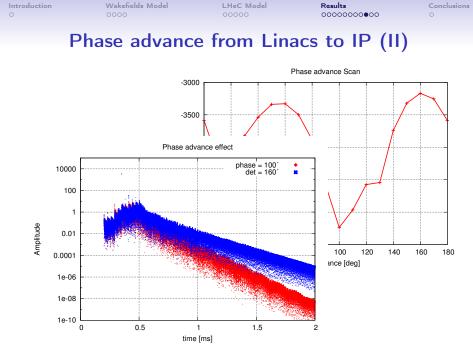
Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Phase advance in the Final Focus


Transport of the beam from the end of Linac 1 to the IP is done with the matrix:

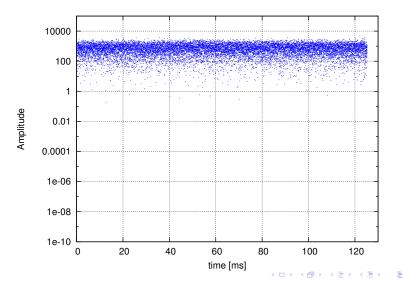

$$\begin{pmatrix} \sqrt{\frac{\beta_{IP}}{\beta_L}}(\cos\psi + \alpha_L\sin\psi) & \sqrt{\beta_{IP}\beta_L}\sin\psi \\ \frac{\alpha_L - \alpha_I P}{\sqrt{\beta_{IP}\beta_L}}\cos\psi - \frac{1 + \alpha_{IP}\alpha_L}{\sqrt{\beta_{IP}\beta_L}}\sin\psi & \sqrt{\frac{\beta_L}{\beta_{IP}}}(\cos\psi - \alpha_{IP}\sin\psi) \end{pmatrix}$$

And similar to go back into Linac 2.

- The phase advance ψ does not affect the shape of the beam,
- but it determines how the average offset and angle mix together.
- A scan of this parameter has been done.

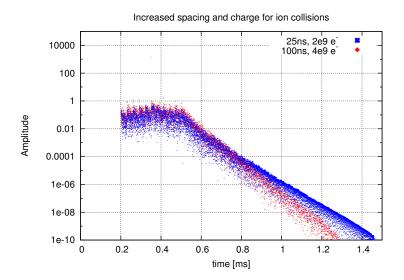
20/23

Wakefields Model


LHeC Model

Results

Conclusions


Stability of a Jittering Beam

5 million bunches with incoming offset of 0.1 σ_x (cuts at 0.5 σ_x). The beam does not show any breakup.

200

lon collision setup

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

roduction	Wakefields Model	LHeC Model	Results 00000000000	Conclusions ●
Summary				

- A model for dipolar long-range wakefields has been implemented into a tracking code for recirculating machines.
- The FODO in the linacs has been optimized to reduce the effect of wakefields.
- Many cases have been explored verifying the impact of different bunch trains on the stability, with the cavities scaled at the new frequency of 802 MHz.
- The impact of the beam-beam has been investigated.
- The threshold current that indefinitely sustains an excitation is reached at 25 ns spacing with about 7*e*9 particles per bunch, more than tree times bigger the charge foreseen.
- The currents foreseen for the LHeC are safe within this context.
- Additional HOM dampers could give a better margin.
- Future works may:
 - add the impact of element misalignments and study a good correction;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- study the coupling with ions cloud;
- include longitudinal effects (required arc optic);
- ...