LHeC-Note-2013-002 PHY Geneva, July 26, 2013

Max Klein¹, Voica Radescu²

¹University of Liverpool, Physics Department, UK ² DESY Hamburg, Germany

Contribution to the Snowmass 2013 Workshop

Introduction and Updates (work in progress)

LHeC Workshop, Chavannes-de-Bogis, January 20th, 2014

Snowmass13 QCD WG report

Parton Distributions

Need to know the PDFs much better than so far, for nucleon structure, q-g dynamics, Higgs, searches, future colliders, and for the development of QCD.

(Un)certainty on PDFs

Light Quarks:

valence x < 0.01, $u_v x > 0.8$, $d_v x > 0.6$ light sea (related to strange) -8% ATLAS/F₂, light sea quark asymmetry, d/u=? Isospin relations (en!) ??

Strange: unknown, =dbar? strange valence?

Charm: need high precision to % for α_s (recent HERA 5%) Beauty: HERA 10-20%, bb \rightarrow A? Top: tPDF at high Q² >M_t² - unknown

Gluon: low x, saturation?, high x - unknown medium x: preciser for Higgs! Recent review: cf E.Perez, E.Rizvi 1208.1178, in RPP

..unintegrated, diffractive, generalised, polarised, photonic, nuclear PDFs ???

Simulated LHeC Data (Note=CDR=OLD)

Scenario "B": (Lumi e^{+/-}p = 50 fb⁻¹) Ep=7 TeV, Ee=50 GeV, Pol=±0.4

- Kinematic region: $2 < Q^2 < 500\ 000\ GeV^2$ and 0.000002 < x < 0.8
- Scenario "H": (Lumi e⁻p = 1 fb⁻¹) Ep=1TeV, Ee=50 GeV, Pol=0
 - Kinematic region: $2 < Q^2 < 100\ 000\ GeV^2$ and 0.000002 < x < 0.8

Typical uncertainties:

- Full simulation of NC and CC inclusive cross section measurements including statistics, uncorrelated and correlated uncertainties based on typical best values achieved by H1
 - Statistical it ranges from 0.1% (low Q^2) to ~10% for x=0.7 in CC
 - Uncorrelated systematic: 0.7 %
 - Correlated systematic: typically 1-3% (for CC high x up to 9%)

source of uncertainty	error on the source or cross section
scattered electron energy scale $\Delta E_e'/E_e'$	0.1 %
scattered electron polar angle	$0.1\mathrm{mrad}$
hadronic energy scale $\Delta E_h/E_h$	0.5%
calorimeter noise (only $y < 0.01$)	1-3%
radiative corrections	0.5%
photoproduction background (only $y > 0.5$)	1 %
global efficiency error	0.7%

This set is available on LHAPDF

Settings for the PDF determination

[HERAFitter framework]

– Data:

- LHeC simulated data:
 - NC e^+p , NC, e^-p , CC e^+p , CC e^-p postive and negative polarisations P=±0.4
- Published HERA I (NC, CC e[±]p data, P=0)
 - Kinematics of HERA data: $0.65 > x > 10^{-4}$, $30\ 000 > Q^2 > 3.5\ GeV^2$
- Full experimental Uncertainties

- Initial Theory settings:

- NLO DGLAP [QCDNUM package], RT scheme
- Fitted PDFs:
 - uval, dval, g, Ubar=ubar+cbar, Dbar=dbar+sbar
 - » Sea=Ubar+Dbar
 - » sbar=s=fsDbar=dbar fs/(1-fs) with fs=0.31 at starting scale
 - Impose the fermion and momentum sum rules
 - One B parameter for sea and one for valence

$$egin{array}{rll} xg(x)&=&A_gx^{B_g}(1-x)^{C_g}(1+D_gx)\,,\ xu_v(x)&=&A_{u_v}x^{B_{u_v}}(1-x)^{C_{u_v}}(1+E_{u_v}x^2)\,,\ xd_v(x)&=&A_{d_v}x^{B_{d_v}}(1-x)^{C_{d_v}}\,,\ xar{U}(x)&=&A_{ar{U}}x^{B_{ar{U}}}(1-x)^{C_{ar{U}}}\,,\ xar{D}(x)&=&A_{ar{D}}x^{B_{ar{D}}}(1-x)^{C_{ar{D}}}\,. \end{array}$$

Gluon Saturation at Low x?

cf H.Kowalski, L.Lipatov, D.Ross, arXiv:1205.6713

Partons at low x

Valence quark distributions

Unconstrained setting at low x

- Usual assumptions for light quark decomposition at low x may not necessary hold.
- Relaxing the assumption at low x that u=d, we observe that uncertainties escalate.

- One can see that for HERA data, if we relax the low x constraint on u and d, the errors are increased tremendously!
- However, when adding the LHeC simulated data, we observe that uncertainties are visibly improved even without this assumption.
- Further important cross check comes from the deuteron measurements, with tagged spectator and controlling shadowing with diffraction [see tomorrow LHeC talks]

Voica Radescu

Impact on d/u ratios

• Constrained decomposition:

Releasing further PDF constraints

• Releasing further the assumptions:

$$egin{array}{rll} xg(x)&=&A_g x^{B_g}(1-x)^{C_g}(1+D_g x)\,,\ xu_v(x)&=&A_{u_v} x^{B_{u_v}}(1-x)^{C_{u_v}}(1+E_{u_v} x^2)\,,\ xd_v(x)&=&A_{d_v} x^{B_{d_v}}(1-x)^{C_{d_v}}\,,\ xar{U}(x)&=&A_{ar{U}} x^{B_{ar{U}}}(1-x)^{C_{ar{U}}}\,,\ xar{D}(x)&=&A_{ar{D}} x^{B_{ar{D}}}(1-x)^{C_{ar{D}}}\,. \end{array}$$

$$egin{array}{rll} xg(x)&=&A_gx^{B_g}(1-x)^{C_g}\left(1+D_gx
ight)\,,\ xu_v(x)&=&A_{u_v}x^{B_{u_v}}(1-x)^{C_{u_v}}\left(1+E_{u_v}x^2
ight)\,,\ xd_v(x)&=&A_{d_v}x^{B_{d_v}}(1-x)^{C_{d_v}}\,,\ x\overline{u}(x)&=&A_{\overline{u}}x^{B_{\overline{u}}}(1-x)^{C_{\overline{u}}}\,,\ x\overline{d}(x)&=&A_{\overline{d}}x^{B_{\overline{u}}}(1-x)^{C_{\overline{u}}}\,,\ xs(x)&=&r_sA_sx^{B_s}(1-x)^{C_s} \end{array}$$

- Removing the correlation that ubar=dbar at low x
- Free parameters for the strange quark are introduced
- This study was driven by the recent ATLAS results on strange determination, hence we have repeated the impact of LHeC study under the new conditions.

Releasing assumptions

Inclusive LHeC data leads to very precise determination of all PDFs even after removing large bulk of assumptions:

LHeC ep data constrain better U than D distributions, however deuteron data would symmetrise our understanding. Determination of the strange can complement the strange determination from the charm data Voice Radescu

Strange Quark Distribution

JPhysG 39(2012)7

Initial study (CDR): Charm tagging efficiency of 10% and 1% light quark background in impact parameter

F₂^{charm} and F₂^{beauty} from LHeC

Hugely extended range and much improved precision ($\delta M_c=60 \text{ HERA} \rightarrow 3 \text{ MeV}$) will pin down heavy quark behaviour at and far away from thresholds, crucial for precision t,H.. In MSSM, Higgs is produced dominantly via bb \rightarrow H , but where is the MSSM..

Further studies ("New")

The ERL configuration does not provide polarised positrons at comparable L The interest in the Higgs prefers electrons with negative, high polarisation:

all for ep: Ee=60 GeV, Ep=7000GeV, MSTWLO				
acronym	charge	polarisation	luminosity	(fb-1)
mimi	-	-0.8	500	
mipl	-	+0.8	50	
plnu	+	0	5	
_				

Not (yet) included low E_p data (important for high x) nor low E_e (F_L)

PDF Uncertainties high x - Gluon

PDF Uncertainties high x - Valence

Further initial results

First, standalone eD data fits

3.5 TeV x 60 GeV, e-, P=-0.8, 1fb-1 Neutral and Charged Current, exp uncertainties

Future fit of jointly ep and eD data will lead to precise unfolding of u-d

Deuterons and Light Sea Quark Asymmetry

d/u at low x from deuterons

- Flavour separation

Nice: Gribov relation and spectator tagging to get rid off shadowing and Fermi motion !!

Summary

With the LHeC the determination of the PDFs, quarks and gluons, will be put on a completely new base:

- Determination of all quark PDFs, including d/u, s, c, b
- Mapping of the gluon distribution from nearly 10⁻⁵ to x=1
- Determination of the strong coupling to permille level (CDR)

This puts severe requirements to detector design, precision of tracking and calorimetry in large acceptance and to QCD.

Besides the classic PDFs, the LHeC provides much further insight to photon, neutron, nuclear, Pomeron structure and to the extension of the collinear approximation to generalised PDs.

Further studies are envisaged (data optimisation, role of e+, d..)

backup

The strong coupling "constant"

Method	Current relative precision		Future relative precision
e^+e^- evt shapes	$expt \sim 1\%$ (LEP)		<1% possible (ILC/TLEP)
	thry $\sim 3\%$ (NNLO+NLL, n.p. signif.)	[24]	$\sim 1.5\%$ (control n.p. via $Q^2\text{-dep.})$
e^+e^- jet rates	$expt \sim 2\%$ (LEP)		<1% possible (ILC/TLEP)
	thry $\sim 1\%$ (NNLO, n.p. moderate)	[25]	$\sim 0.5\%$ (NLL missing)
precision EW	$expt \sim 3\% (R_Z, LEP)$		0.1% (TLEP [8]), 0.5% (ILC [9])
	thry $\sim 0.5\%$ (N ³ LO, n.p. small)	[26, 7]	$\sim 0.3\%$ (N4LO feasible, $\sim 10~{\rm yrs})$
τ decays	expt $\sim 0.5\%$ (LEP, B-factories)		<0.2% possible (ILC/TLEP)
	thry $\sim 2\%$ (N ³ LO, n.p. small)	[6]	$\sim 1\%~({\rm N^4LO}$ feasible, $\sim 10~{\rm yrs})$
ep colliders	$\sim 1-2\%$ (pdf fit dependent)		0.1% (LHeC + HERA [21])
	(mostly theory, NNLO)	[27, 28, 29, 30]	$\sim 0.5\%$ (at least $\rm N^3LO$ required)
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$)		< 1% challenging
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.)	[15, 19, 31]	(NNLO jets imminent [20])
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)		$\sim 0.3\%$
	(limited by accuracy of pert. th.)	[32, 33, 34]	(~ 5 yrs [35])

Table 1-1. Summary of current uncertainties in extractions of $\alpha_s(M_Z)$ and targets for future (5-25 years) determinations. For the cases where theory uncertainties are considered separately, the theory uncertainties for future targets reflect a reduction by a factor of about two.

Snowmass QCD WG report 9/2013

Prospects to measure $\alpha_s(M_z^2)$ to per mille precision with future ep and ee colliders Important for gauge unification, precision Higgs at LHC, and to overcome the past.

The strong coupling constant

	$\alpha (M_{\pi})$]	
BBG	$\frac{\alpha_s(M_Z)}{0.1134 + 0.0019}$	valence analysis, NNLO [235, 236]	$\alpha_{\rm c}$ is the worst measured	
BB	0.1132 ± 0.0022	valence analysis. NNLO [237]	fundamental coupling constant	
GRS	0.112	valence analysis, NNLO [238]	Is there grand unification?	
ABKM	0.1135 ± 0.0014	HQ: FFNS $n_f = 3$ [228]	is there grand diffication:	
ABKM	0.1129 ± 0.0014	HQ: BSMN-approach [228]		
JR	0.1124 ± 0.0020	dynamical approach [231]	In DIS, values (NNLO) range from	
JR	0.1158 ± 0.0035	standard fit [231]	0.113 to 0.118.	
ABM11	0.1134 ± 0.0011	[229]		
MSTW	0.1171 ± 0.0014	[239]	Tloads to about 0 120	
NN21	0.1173 ± 0.0007	[233]		
CT10	0.118 ± 0.005	[240]		
Gehrmann et al.	$0.1153 \pm 0.0017 \pm 0.0023$	e^+e^- thrust [241]	Lattice predictions seem to	
Abbate et al.	$0.1135 \pm 0.0011 \pm 0.0006$	e^+e^- thrust [242]	determine the world average.	
3 jet rate	0.1175 ± 0.0025	Dissertori et al. 2009 [243]		
Z-decay	0.1189 ± 0.0026	BCK 2008/12 (N ³ LO) [121, 244]		
au decay	0.1212 ± 0.0019	BCK 2008 [244]		
au decay	0.1204 ± 0.0016	Pich 2011 [20]	The LHeC has the potential to	
au decay	0.1180 ± 0.0008	Beneke, Jamin 2008 [245]	measure α s to permille accuracy	
lattice	0.1205 ± 0.0010	PACS-CS 2009 (2+1 fl.) [246]	(0.0002) from a consistent	
lattice	0.1184 ± 0.0006	HPQCD 2010 [247]		
lattice	0.1200 ± 0.0014	ETM 2012 (2+1+1 fl.) [248]	data set. This leads to high	
BBG	$0.1141 \begin{array}{c} + \ 0.0020 \\ - \ 0.0022 \end{array}$	valence analysis, N ³ LO(*) [235]	precision understanding of all	
BB	0.1137 ± 0.0022	valence analysis, N ³ LO(*) [237]	related effects (low x, δM_c =3MeV)	
world average	$0.1\overline{184 \pm 0.0007}$	[249] (2009)	and nOCD at N^3IO	
	0.1183 ± 0.0010	[20] (2011)		