Top physics at the LHO

LHeC workshop 20th january 2014

Olaf Behnke (DESY)

Single top production

Top pair production

 Anomalous production: FCNC, Heavy Top partners (study by J. Ferrando)

Single Top production in charged currents

- Determine V_{tb} from cross section
- Check for anomalous production
- Depending on (sensitive to) effective b-quark density in proton

Single Top production in charged currents

- Determine V_{tb} from cross section
- Check for anomalous production
- Depending on (sensitive to) effective b-quark density in proton

Can be determined in situ from F2bb measurements at LHeC!

Studies with Madgraph 5

Madgraph parameters used throughout this talk

- Collider scenario: 7 TeV p on 60 GeV electrons
- So far only on parton level
- Standard madgraph cards (e.g. CTEQ6L1)
- 5-flavour scheme

Studies with Madgraph 5

Obtained total LO Cross Section: 1.8 pb

Check in the following slides the decay kinematics (is it within the LHeC detector?)

Typical LHC cut (ATLAS, CMS)

Typical LHC cut

Typical LHC cut

Typical LHC cut

Conclusion from kinematic studies on charged current Single Top production

 Majority of events is within the anticipated LHeC detector acceptance.

CC Single Top at LHeC compared to LHC

s-channel

t-channel

tW-channel

tt prod.

LHC

w b

163

σ@7TeV (pb)
(NNLO Kidonakis)

4.6

64.2

15.7

LHeC

~0.01 in DIS

 σ (pb) (LO Madgraph)

→ Expected #events for 1000 fb⁻¹

1.8

1.8M

2900

0.0029

~10000

CC Single Top at LHeC compared to LHC

CC Single Top: Status of V_{tb} at LHC

Georgio Chiarelli, arXiv:1302.1773

Using the current single top cross section measurements, one can compile (see figure $\boxed{10}$) a list of the direct determination of $|V_{tb}|$. The situation is far from being satisfying. While the CMS 7 TeV measurement $\boxed{5}$ has an uncertainty of ≈ 5 %, all the other results (including the most recent one by CMS at 8 TeV) have uncertainties at the level of 10%, too large to challenge the SM. As the LHC has already large statistics, these measurements are (mostly) systematics limited. It is a challenge to tackle in order to use this process as a tool to search for new physics in the top sector.

→ Further detector level studies are needed to assess the LHeC potential for V_{tb} (Acceptance, Backgrounds from W production etc.)

Top pair production in DIS at LHeC

Sensitive to the proton gluon density at high x

Madgraph LO Cross Section: 9.9 fb

Expect more from photoproduction (not simulated yet)

Top pair production in DIS at LHeC Rapidity of top

Forward to very forward production

Top pair production in DIS at LHeC x of gluon

With L=1000 fb⁻¹ expect some tens of events produced at high x > 0.5

Top pair production in DIS at LHeC x of gluon after final state cuts

Total kinematic acceptance ~50%, high x somewhat suppressed

New physics with top at LHeC

FCNC Anomalous Single Top production

- Extremely suppressed in SM
- Potential window to BSM

Study by G. Brandt (LHeC 2008 workshop, Divonne)
Using anotop MC with $K_{ut\gamma}$ =0.01: \rightarrow Expect for 7 TeV x 70 GeV
LHeC with 1000 fb⁻¹

7600 FCNC top events

But large backgrounds from SMW and CC single top

Better prospects at LHeC-based γp collider mode, see LHeC CDR, p.205

FCNC single top – LHC results (2013)

• Production studies:

ATLAS 2.05 fb⁻¹ CERN-PH-EP-2012-032

 $K_{\rm ugt}/\Lambda < 0.0069~{\rm TeV^{-1}}$ $K_{\rm cgt}/\Lambda < 0.016~{\rm TeV^{-1}}$

• Mostly decay studies: exploit BR(t \rightarrow qZ) ~ (K_{tqZ})²

The best current limits just starting to probe the $<\dot{10}^{-3}$ range:

Kerim Suruliz Top 2013 workshop:

- $BR(t \to qZ) < 0.07\%$ at 95% CL (CMS, TOP-12-037, 19.5fb⁻¹ at $\sqrt{s} = 8$ TeV)
- $BR(t \to cg) < 1.6 \cdot 10^{-4}$ (ATLAS-CONF-2013-063, $\sqrt{s} = 8$ TeV)
- $BR(t \to cH) < 3.1 \cdot 10^{-3}$ (SUS-13-002; also ATLAS-CONF-2013-063, both $\sqrt{s} = 8$ TeV)

The interesting range is however below this - Randall-Sundrum, 2DHM, (RPV) SUSY and other BSM model values typically expected to be $10^{-5} - 10^{-4}$, or less.

Could LHeC with ~2M top quarks make sensitive decay studies? $t \rightarrow qZ$ not enough statistics, but perhaps $t \rightarrow q\gamma$ (to be checked)

Top Partners

J. Ferrando

- Potential top-like BSM:
 - heavy vector-like quarks T arise in many BSM scenarios: extra dimensions, composite Higgs ...
- T decays to Wb, tH, tZ with BR of order unity
- Lower mass limits at the LHC (pair production)
 M(T) 687-782 GeV (arXiv:1311.7667)
- Single production possible at the LHeC

Top Partners: Production

- Try using generic model of Wulzer et al. (arXiv:1211.5663) in Madgraph 5
- 700-800 GeV only a handful of events
- Some freedom in coupling choice (maybe enough for a factor of 4 in cross section)

Mass (GeV)	Cross-section (fb)	BR(T->Wb)	BR(T->tZ)	BR(T->tH)
400	13.3	0.64	0.13	0.23
500	1.85	0.58	0.17	0.25
600	0.277	0.56	0.20	0.24
700	3.91e-02	0.55	0.21	0.24
800	4.7e-03	0.54	0.22	0.23

Top Partners: Signatures

- General signature:
 - Missing transverse momentum + forward b-jet
- tH, tZ and Wb for T decay
- Acceptance should be high so long as selection focusses on T decay products
- Main backgrounds:
 - Single top
 - Single top + Z (0.94 fb) or + H (4.59e-2 fb)

Conclusions on top at LHeC

- Study top production for the first time at an ep collider → is a unique test of the SM
- Single Top production in charged currents: Expect precision measurement of V_{tb}
- Top Pair production in DIS and photoproduction: clean test of proton gluon density at high x (but suffers from rather low statistic)
- In general: sensitive tests of new physics through anomalous production channels/cross sections and decays
- Further studies at detector level needed (including background simulation) for detailed assessment of physics potential.
- Further physics topics not discussed here: e.g. potential for top mass measurement from reconstructed decays of from the threshold behaviour of production (e.g. in pair production in DIS)

Backup slides

Top physics at the LHO

LHeC workshop 20th january 2014

Olaf Behnke (DESY)

- Single top production Wb \rightarrow t, γ b \rightarrow tW, FCNC γ u \rightarrow t
- Top pair production γg → t t~

The Detector 'that should do it': Ring-Linac scenario

Outer detectors (HAC tailcatcher/muon detectors not shown) also not shown: forward proton taggers, backward lumi monitors

