Nuclear Parton Distributions

Hannu Paukkunen

University of Jyväskylä & Helsinki Institute of Physics, Finland

Workshop on the LHC Electron-proton and electron-ion collisions at the LHC

20-21 January 2014 Chavannes-de-Bogis, Switzerland

Outline

I A quick overview of the existing nuclear PDFs

II Evidence for nuclear PDFs in p+Pb dijets?

III Prospects for the LHeC/EIC to measure nPDFs

IV Summary

Global fit of nPDFs - test of factorization

- General observation: $\sigma^{\text{bound nucleon}} \neq \sigma^{\text{free nucleon}}$
- Search for <u>process independent</u> nPDFs to realize such differences

$$\sigma_{\mathrm{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\mathrm{DIS}}^{\ell+i\to\ell+X}(\mu^2)$$
 Nuclear PDFs, obeying the standard DGLAP Usual perturbative coefficient functions

The contemporary NLO nPDF fits

$$f_i^{p,A}(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2)$$

	HKN07	EPS09	DSSZ	nCTEQ prelim.
Ref.	Phys. Rev. C76 (2007) 065207	JHEP 0904 (2009) 065	Phys.Rev. D85 (2012) 074028	arXiv:1307.3454
Order	LO & NLO	LO & NLO	NLO	NLO
Neutral current e+A / e+d DIS	√	√	√	V
Drell-Yan dileptons in p+A / p+d	√	√	√	√
RHIC pions in d+Au / p+p		√	√	
Neutrino-nucleus DIS			√	
Q ² cut in DIS	1GeV	1.3GeV	1GeV	2GeV
# of data points	1241	929	1579	708
Free parameters	12	15	25	17
Error sets available		√	√	√
Error tolerance $\Delta \chi^2$	13.7	50	30	35
Baseline	MRST98	CTEQ6.1	MSTW2008	CTEQ6M
Heavy quark treatment	ZM_VFNS	ZM_VFNS	GM_VFNS	GM_VFNS

Kinematic coverage of the nuclear data

- The kinematic coverage of the data rather restricted (in comparison to the free proton fits)
- The LHC p+Pb runs should enlarge this plane to some degree

Comparison: Valence quarks

Some differences between EPS09, HKN07 & DSSZ.... (data constraints for x=0.1...1)

No data constraints

 $(R_{uV} \& R_{dV} almost the same for EPS09, DSSZ, HKN07)$

Clear diasgreement at large x. Probably a misinterpretation of the "isospin" corrections.

...but the preliminary nCTEQ curves show a really drastic difference

$$d\sigma^{\text{DIS}} \sim \left(\frac{4}{9}\right) u_v^A + \left(\frac{1}{9}\right) d_v^A$$

$$\sim u_v^A \left[R_{uv} + R_{dv} \frac{d_v^p}{u_v^p} \frac{Z + 4N}{N + 4Z} \right]$$

$$\approx u_v^A \left[R_{uv} + \frac{1}{2} R_{dv} \right]$$

• Other type of data needed to have constraints for R_{uv} and R_{dv} separately!

Comparison: Sea Quarks

No qualitative disagreements in the data constrained region (x=0.01...0.1)

No data constraints

No qualitative disagreements to preliminary nCTEQ results either

Comparison: Gluons

Difference between EPS09 & DSSZ:

The antishadowing and EMC effect in EPS09 comes from the RHIC pion data

DSSZ advocated nuclear modifications in the fragmentation functions. No antishadowing nor EMC effect.

$$d\sigma^{\mathrm{d}+\mathrm{Au}\to\pi+\mathrm{X}} = \sum_{i,j,k} f_i^{\mathrm{d}} \otimes d\hat{\sigma}^{ij\to k} \otimes f_j^{\mathrm{Au}} \otimes D^{k\to\pi+X}$$

Both can fit the pion data, but the origin of the effect is different physics.

 $D(g \rightarrow pion, A) / D(g \rightarrow pion, p)$

Comparison: Gluons

Strongest shadowing and largest error band in nCTEQ

Higher Q² cut has removed part of the small-Q² DIS data (largest DGLAP effects).

II Evidence for nuclear PDFs in p+Pb dijets?

- CMS dijets using the 2013 p+Pb data
- Data binned in dijet "pseudorapidity"

$$\eta_{
m dijet} \equiv (\eta_1 + \eta_2)/2$$
, \uparrow pseudorapidities of the individual jets

Rapidity shift

$$\eta_{
m shift} \equiv 0.5 \log{(E_{
m Pb}/E_{
m p})} pprox -0.465$$
 Pb \longrightarrow \blacksquare p

(results presented in the collider frame)

CMS PAS HIN-13-001

• How sensitive is this to the nuclear (gluon) PDF modifications?

Eskola, Paukkunen, Salgado, arXiv:1308.6733

Comparison to the NLO calculations – the gluon nuclear mods make a difference!

- Should constrain gluons at large x (small x only indirectly)
- Much more LHC p+Pb data are expected soon, but for the moment it's still difficult to say how they will affect the global fits of nPDFs.

III LHeC / EIC prospects for nPDFs

Based on ongoing work:

LHeC: H.P, N. Armesto, M. Klein

EIC: H.P, M. Lamont E.C. Aschenauer, T. Ullrich, M. Stratmann, ...

Kinematics: EIC vs. LHeC

 Both colliders would enlarge the kinematic coverage of the present nuclear DIS data - LHeC hugely, EIC a bit less

Here, we estimate the impact of the LHeC and EIC data on the nPDFs by directly fitting samples of pseudodata

The LHeC & EIC pseudodata

Samples of neutral-current DIS pseudodata for reduced cross-sections

$$\sigma_r = \frac{xQ^4}{2\pi\alpha_{\rm em}^2 Y_+} \frac{d^2\sigma}{dxdQ^2} \qquad Y_+ = 1 + (1 - y)^2$$

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha_{\rm em}^2}{Q^4} \frac{1}{x} \left[xy^2 F_1 + (1 - y)F_2 \pm xy(1 - \frac{y}{2})F_3 \right]$$

was generated from using assuming:

$$E_{lepton} = 60 \text{ GeV}, \qquad E_{proton} = 7000 \text{ GeV}, E_{Pb} = 2750 \text{ GeV}$$
 $E_{lepton} = 20 \text{ GeV}, \qquad E_{proton} = 7000 \text{ GeV}, E_{Pb} = 2750 \text{ GeV}$
 $E_{lepton} = 26.9 \text{ GeV}, \qquad E_{proton} = 7000 \text{ GeV}, E_{Pb} = 2750 \text{ GeV}$

in the kinematical window: $10^{-5} < x < 1 & 2 < Q^2 < 10^5 \text{ GeV}^2$

For comparison, the foreseen EIC capabilities

$$E_{lepton} = 5 \text{ GeV}, \qquad E_{p,Au,Cu} = 50, 75, 100 \text{ GeV}$$
 (Phase 1)
 $E_{lepton} = 20 \text{ GeV}, \qquad E_{p,Au,Cu} = 50, 75, 100 \text{ GeV}$ (Phase 2)

in the kinematical window: $10^{-3} < x < 1 \& Q^2 < 500 \text{ GeV}^2$

Nuclear effects in cross sections "EPS09 based"

Framework of the pQCD analysis

- The cross-sections are computed at NLO with the SACOT prescription for the heavy quark treatment
- Parametrize the nuclear modifications at Q=1.3 GeV, CTEQ6.6 as the baseline

$$f_k^{\text{proton},A}(x,Q^2) = R_k^A(x,Q^2) f_k^{\text{proton}}(x,Q^2)$$

$$R_V^A(x,Q_0^2)$$
 for all valence quarks $R_S^A(x,Q_0^2)$ for all sea quarks $R_G^A(x,Q_0^2)$ for gluons

- The LHeC/EIC pseudodata are added on top of all other DIS, Drell-Yan, and inclusive pion data, that were included in EPS09.
- Standard χ^2 -fit with Hessian error analysis with $\Delta \chi^2 = 25$

Before the fit: LHeC vs. baseline fit

Before the fit: LHeC vs. baseline fit

After the fit: LHeC vs. new fit

Effects in nPDFs, LHeC

A drastic reduction in the small-x gluon and sea quark uncertainties

Effects in nPDFs, LHeC

Currently no real data constraints!

- A drastic reduction in the small-x gluon and sea quark uncertainties
- More freedom in the fit function should be allowed the baseline uncertainty probably underestimated
- Addition of charged-current data should give a handle on the flavor dependence, which is currently (practically) unconstrained

The low-energy data, before inclusion

• Include also the data from the E_{lepton} = 20GeV and E_{lepton} = 26.9GeV runs

The low-energy data, after inclusion

• Include also the data from the E_{lepton} = 20GeV and E_{lepton} = 26.9GeV runs

Inclusion of the low-energy data

• Include also the data from the E_{lepton} = 20GeV and E_{lepton} = 26.9GeV runs

Relative uncertainties compared to the case with E_{lepton} = 60GeV data only

Even larger reduction in the small-x uncertainties – though not dramatic

Before the fit: some EIC pseudodata vs. baseline fit

After the fit: some EIC pseudodata vs. new fit

Effects in the nuclear modificaton factors: EIC

"Phase 2"

Constraints for nPDFs: LHeC vs. EIC

- Both fits use only neutral-current DIS pseudodata, $\Delta \chi^2 = 25$
- The advantage of LHeC reaching smaller x is obvious

Summary

Quickly reviewed the current status of the global nPDF fits

Large differences among independent fits. The LHC p+Pb data are expected to have an impact

Flashed first dijet measurements from the LHC p+Pb runs

Already this first data could discriminate between different sets of nPDFs. Much more to come (W, Z, direct photon, ...)

Discussed LHeC & EIC prospects

Would allow to study the nPDFs to a similar precision as done in HERA for the free proton

The potential constraints for nPDFs huge in LHeC, bit less so for the EIC. Work still in progress...