Overview of the T2K ND280 DAQ Towards a DAQ system for HyperK

Dr Helen O'Keeffe

Lancaster University

h.okeeffe@lancaster.ac.uk

18th December 2013

Outline

- Brief overview of T2K experiment
- ND280
- T2K DAQ systems
- Data rates for HK
- UK interests

T2K experiment

ND 280

INGRID

ND280

Measurement/monitoring of beam profile

Characterisation of beam interactions BEFORE oscillation

ND 280

TripT electronics

Multi Pixel Photon Counter (MPPC)

TripT **F**ront end **B**oard (TFB)

Readout Merger Module (RMM)

Triggering

DAQ architecture

FPN processes

MIDAS framework

December 2013

T2K ND280 DAQ summary

- DAQ has run stably since start of T2K experiment
- Able to link 5 independent detector systems
- Full training for shifters/sub-detector experts
- 24 hour on call support on-site and remotely

11 / 19

HK DAQ

- UK institutions interested in DAQ
- Small amount of money to spend on technical help
- Main focus is on backend and software trigger
- Interested in working on 1 kT prototype

Data rates

Important to consider data rate in FULL volume

Event class	(estimated) rate (Hz)	Notes
PMT noise	10×10^3	Per PMT
²³⁸ U chain	158	Assuming SK levels
²³² Th chain	475	Assuming SK levels
²²² Rn	2772	Assuming SK levels

Only water radioactivity has been included, external radioactivity from shielding water, construction materials etc has been ignored.

Data rates II

Assume 12 bytes/PMT hit, 100,000 PMTs in detector, 10 hits per background event

Event class	Estimated data rate
PMT noise	12 GB/s
²³⁸ U chain	20 MB/s
²³² Th chain	57 MB/s
²²² Rn	332 MB/s

Accidental rate

Expression from SNO-STR-90-036 (1990) The accidental rate A is

$$A = \frac{\tau^{-1}k^{n_t}e^{-k}}{(n_t - 1)!}$$

where

 $n_t = \text{number of tubes firing}$

N= total number of PMTs \rightarrow 10,000 per compartment

R = Dark noise rate of the tubes = 10 kHz

 $\tau = \text{discriminator time width} = 100 \text{ ns}$

 $k = NR\tau$

NHit threshold rates

- SK triggers when a hit count exceeds a threshold in a given time window
- Atmospheric and beam events this concept is OK

NHit threshold	Accidental rate
10	12.5 MHz
15	5.2 MHz
20	373 kHz
25	7.3 kHz

- For solar, geo etc this is not OK
- Straightforward NHit cut may reject too much physics
- How can we differentiate between noise and low energy events

Separating noise and low energy events

Angular distributions

- Noise hits should be random across detector
- Hits from low energy events should be less isotropic

Low E event Less isotropic Average angle between hits is small

Noise "event" More isotropic Average angle between hits is larger

Timing information

- Noise hits randomly dispersed in a trigger window
- Hits from low energy events have a different timing distribution?

The way forward

Generate low energy events (e.g. ²⁰⁸TI, ²¹⁴Bi etc) using MC Generate random hits across detector Look at both of these using the event display Calculate angular distributions etc

Goal: To develop a "sophisticated" trigger which will remove noise but retain low energy events

Conclusions

- Several UK institutes will contribute to the HK DAQ systems
- Small amount of money to spend on technical support between Jan 2014 and Sept 2014
- Focus on design of backend systems
- Interested in software trigger as part of DAQ
- Participation in 1 kT prototype