

1st EU HK

Three neutrino mixing.

If neutrinos have mass:
$$|\nu_{l}\rangle = \sum_{i} U_{li} |\nu_{i}\rangle$$

$$U_{li} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu l} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

CP sensitivity mainly because this term flips sign for v and anti-v

Complicated equation means covariances and degeneracies!

$$\frac{n_{31}^2L}{4E} \times \left(1 + \frac{2a}{\Delta n_{31}^2} \left(1 - 2S_{13}^2\right)\right) \\ + 8C_{13}^2S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^2L}{4E}\sin\frac{\Delta m_{31}^2L}{4E}\sin\frac{\Delta m_{21}^2L}{4E} \\ - 8C_{13}^2C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^2L}{4E}\sin\frac{\Delta m_{31}^2L}{4E}\sin\frac{\Delta m_{21}^2L}{4E} \\ + 4S_{12}^2C_{13}^2\left\{C_{12}^2C_{23}^2 + S_{12}^2S_{23}^2S_{13}^2 - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^2\frac{\Delta m_{21}^2L}{4E} \\ - 8C_{13}^2S_{13}^2S_{23}^2\cos\frac{\Delta m_{32}^2L}{4E}\sin\frac{\Delta m_{31}^2L}{4E}\frac{\Delta E}{4E}\left(1 - 2S_{13}^2\right) \\ \text{Need Matter effects to get the signs of } \Delta m_{ij}^2$$

this conference Ishidoshiro [hep-ex

How do we know θ_{23} , Δm_{23} ?

MINOS Beam and Atm.

Latest Global Fit, shown tomorrow by Lisi

We are left with 4 questions for 3v...

Why do we need 5σ ?

- There is no calculation that you do which tells you that what you need to discriminate against wrong results is to find 5σ .
- The editors of PRL just got tired of arguing with authors who wanted to title their articles "Discovery of X" on the basis of a 2.2σ excess, so they decreed 3σ is evidence, 5σ is a discovery.
- We don't have to agree.
- The fact remains that the history of our field is littered with wrong results my first exposure to v physics was Reines et al. "discovering" neutrino oscillations, as did Bugey, and about a dozen other experiments, and there was Lubimov's v mass and the 17 keV neutrino and at least a dozen others superluminal neutrinos come from a proud tradition of v anomalies.
- v experiments are hard so why do we believe the current crop?

Which experiment should we do?

- I think that is the wrong question.
- The right question is: How many, and which experiments do we need to do to have complementary confirmations for the answers to all the big questions.
- Another thing to emphasize is multiple observables or techniques within each of the experiments (if possible).
- The SNO experiment was never going to be repeated, so we measured the critical NC signal three different ways within the same experiment.
- So what new experiments will help us answer these questions?

MH effect increases with baseline, CP effect is ~roughly constant.

Note size of CP effect in second maximum...

Dave Wark Oxford U./RAL

T2K Spectra at SK for 7.8x10²¹ POT

- Calculated FD spectra for full T2K statistics
 - Project SK MC to higher exposure
 - Estimate $\overline{\mathbf{v}}$ beam MC from flux ratios
- Simultaneous fit of v_{μ} , v_{e} , v_{μ} , and v_{e} samples
- Oscillation parameter uncertainties
 - Fix solar terms
 - Allow atmospheric terms to float within current uncertainties
 - Project θ_{13} uncertainties to Daya Bay systematic uncertainty: $(\sin^2(2\theta_{13}) = 0.1\pm0.005)$
 - MH and $\delta_{_{CD}}$ are unconstrained
- Assume various true values for: θ_{13} , θ_{23} , δ_{co} , and MH

River, MN Fermilab *

The NOvA Experiment

Dave Wark Oxford U./RAL

Far Detector Status

14 kilotons = 28 NOvA Blocks

24 blocks of PVC modules are assembled and installed in place 19.22 blocks are filled with liquid scintillator 4.34 blocks are outfitted with electronics

November 11, 2013 NNN - M. Muether 17

Physics Reach

Sensitivities assume

- Sin²2θ₁₃=0.095
- 3 years neutrino + 3 years antineutrinos running
- Optimization for ~4% oscillation probability
- 10% uncertainty on backgrounds

δ_{CP} Sensitivity

(b) 1:1 T2K, 1:1 NO ν A $\nu:\bar{\nu}$, NH

(d) 1:1 T2K, 1:1 NO ν A $\nu:\bar{\nu}$, IH

MH Sensitivity

(b) 1:1 T2K, 1:1 NO ν A ν : $\bar{\nu}$, NH

(d) 1:1 T2K, 1:1 NO ν A $\nu:\bar{\nu}$, IH

T2K + NOvA + Reactor Constraints.

δ_{CP} Sensitivity

(b) 1:1 T2K, 1:1 NO ν A $\nu:\bar{\nu}$, NH

(d) 1:1 T2K, 1:1 NO ν A ν : $\bar{\nu}$, IH

MH Sensitivity

(b) 1:1 T2K, 1:1 NO ν A $\nu:\bar{\nu}$, NH

(d) 1:1 T2K, 1:1 NO ν A ν : $\bar{\nu}$, IH

ν_u Disappearance

(b) $50\% \nu$ -, $50\% \bar{\nu}$ -running, true NH.

(d) 50% ν -, 50% $\bar{\nu}$ -running, with ultimate reactor error, true NH.

Only T2K, but full T2K Statistics

δ_{CP} Sensitivity

(b) 1:1 T2K, 1:1 NO ν A $\nu:\bar{\nu}$, NH

(d) 1:1 T2K, 1:1 NO ν A ν : $\bar{\nu}$, IH

MH Sensitivity

(b) 1:1 T2K, 1:1 NO ν A ν : $\bar{\nu}$, NH

(d) 1:1 T2K, 1:1 NO ν A ν : $\bar{\nu}$, IH

Octant Sensitivity

(b) 1:1 T2K, 1:1 NO ν A $\nu:\bar{\nu}$, NH, Simple systematics

T2K + NOvA + Reactor Constraints.

Many are called to measure the MH: PINGU

Many are called to measure the MH: INO

Choubey@neutrino'12

Many are called to measure the MH: JUNO

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	running	planned	approved	Construction	construction
power/GW	17.4	17.4	17.4	17.4	18.4

Many are called to measure the MH: JUNO

For 6 years, mass hierarchy cab be determined at 4σ level, if $\Delta m^2_{\mu\mu}$ can be determined at 1% level

We also have an anomaly from

LSND...

- Backgrounds in green,red
- Fit to oscillation hypothesis in blue

Sterile Indications...

MiniBooNE says....

Neutrino 2012, 6 Jun 2012

100 GeV primary beam fast extracted from SPS; target station next to TCC2; decay pipe l = 100m, ø = 3m; beam dump: 15m of Fe with graphite core, followed by μ stations.

1st EU HK

Conclusions

- Existing experiments have proven that neutrino oscillate and measured all the angles and mass differences (although more precision is needed).
- We are left targeting the MH, the octant, and especially CP violation (and looking for deviations, of course!).
- Over the next ~10 years we will almost certainly get much new data from T2K and NOvA and the reactor experiments Daya Bay, RENO, and Double Chooz.
- We may also get new data from some combination of PINGU, INO, JUNO, and various sterile neutrino experiments.
- We may have a much better idea of the MH and the octant by then, however we won't have any more than hints (at best) on CP violation.
- We will therefore need a large experiment targeted on CP violation!

Dave Wark Oxford U./RA