

## **Expected Sensitivity to CP Violation**

**CPV discovery sensitivity** w/ mass hierarchy known.



#### δ precision

 $< 10^{\circ}$  for  $\delta=0^{\circ}$  ( $< 20^{\circ}$  for  $\delta=90^{\circ}$ )



- Assuming 5% nominal systematics and 0.750MW/y (3y v-beam and 7y v-beam), 74% region of  $\delta$  can be covered at 3 $\sigma$ .
- •It corresponds to a precision of  $< 10^{\circ}$  for  $\delta=0^{\circ}$ .
- •To achieve the full potential in CP violation measurement → systematic errors at 2% level.

2

## T2K Beam-line: our Starting Point



# Outline

- NA61/Shine
- (Upgraded) ND280
- Additional Near Detector
- 1kton Prototype

# Outline

NA61/Shine(Upgraded) ND280Additional Near Detector1kton Prototype

## Simulating neutrino flux

K. Abe et al. (T2K Collaboration), Phys. Rev. D 87, 012001 (2013).



- 1. p interaction inside the carbon target with FLUKA2008.3d
- 2. Tracking through horn fields and decay volume using GEANT3 with GCALOR
- Calculate neutrino producing decays
  Estimate the flux at the near/far detector

#### External Data and Flux

- Hadro-production simulated with FLUKA2008.3d, weighted so that interactions match external data [1]
  - NA61/SHINE (CERN) [2][3], Eitchen et al. [4], and Allaby et al. [5]
  - [1] K. Abe et al. (T2K Collaboration), Phys. Rev. D 87, 012001 (2013).
  - [2] N. Abgrall *et al*. (NA61/SHINE Collaboration), Phys. Rev. C 84, 034604 (2011)
  - [3] N. Abgrall et al. (NA61/SHINE Collaboration), Phys. Rev. C 85, 035210 (2012)
  - [4] T. Eichten et al., Nucl. Phys. B 44 (1972)
  - [5] J. V. Allaby et al., Tech. Rep. 70-12 (CERN,1970)





#### NA61/SHINE

- Located at the CERN SPS (North Area, H2 beam line)
- Fixed target experiment on primary (ions) and secondary (ions, hadrons) beams



Inclusive  $\pi^+$  spectra in p+C at 31 GeV/c

Pion spectra in p+C interactions at 31 GeV/c are published: Phys. Rev. C84 (2011) 034604

- They are used to improve beam neutrino flux predictions
- Adjust models (UrQMD 1107.0374) Fritiof 1109.6768) used in neutrino and cosmic-ray experiments



comparison to UrQMD1.3.1

p [GeV/c]

p [GeV/c]

# Outline

- NA61/Shine
- (Upgraded) ND280
- Additional Near Detector
- 1kton Prototype

#### Near Detector Constraint

#### Neutrino Flux Model:

- Data-driven: NA61/SHINE, beam monitor measurements
- Uncertainties: modeled by variation of normalization parameters (b) in bins of neutrino energy, flavor

## Neutrino Cross Section Model (NEUT):

- Data-driven: External neutrino, electron, pion scattering data
- Uncertainties: modeled by variations of model parameters  $(M_A, p_F, E_b)$  and ad-hoc parameters

#### Constraint from ND280 Data

- Data Samples enhanced in CC interactions with 0, 1 or multiple pions
- Fit to data constrains flux, b, and cross section,  $x=(M_A, p_F, E_b, ad-hoc, etc.)$ , parameters
- Constrained SK flux parameters and subset of cross section parameters are used to predict SK event rates

#### Flux and X-Sections after Constraint



| Parameter                           | Prior to<br>ND280<br>Constraint | After ND280<br>Constraint |  |
|-------------------------------------|---------------------------------|---------------------------|--|
| M <sub>A</sub> (GeV)                | 1.21 ± 0.45                     | $1.22 \pm 0.07$           |  |
| CCQE Norm.*                         | $1.00 \pm 0.11$                 | $0.96 \pm 0.08$           |  |
| M <sub>A</sub> <sup>RES</sup> (GeV) | $1.41 \pm 0.22$                 | $0.96 \pm 0.06$           |  |
| CC1π Norm.**                        | $1.15 \pm 0.32$                 | $1.22 \pm 0.16$           |  |

<sup>\*</sup>For Ev<1.5 GeV

#### Far detector prediction uncertainties after ND280 constraint



Expected number of signal+background events



<sup>\*\*</sup>For Ev<2.5 GeV

## T2K Systematic Errors

Oscillation analysis systematic uncertainties. Systematics for  $N_{SK}^{exp}$  (%):

|            |                                              | $\sin^2 2\theta_{13} = 0.1$ |             |                                                                         |
|------------|----------------------------------------------|-----------------------------|-------------|-------------------------------------------------------------------------|
|            | Error source                                 | w/o ND280 fit               | w/ND280 fit |                                                                         |
| From ND280 | Beam only                                    | 11.4                        | 7.4         |                                                                         |
|            | $M_A^{QE}$                                   | 20.7                        | 3.1         | Flux error and part of cross section model constrained by near detector |
|            | $M_A^{RES}$                                  | 3.2                         | 1.0         |                                                                         |
|            | CCQE norm. $(E_{\nu} < 1.5 \text{ GeV})$     | 9.0                         | 6.2         |                                                                         |
|            | $CC1\pi$ norm. $(E_{\nu} < 2.5 \text{ GeV})$ | 4.0                         | 2.0         |                                                                         |
|            | $NC1\pi^0$ norm.                             | 0.6                         | 0.4         |                                                                         |
| SK only    | CC other shape                               | 0.1                         | 0.1         | Modeling of initial state of nucleus                                    |
|            | Spectral Function                            | 5.9                         | 5.9         |                                                                         |
|            | $p_F$                                        | 0.1                         | 0.1         |                                                                         |
|            | CC coh. norm.                                | 0.2                         | 0.2         |                                                                         |
|            | NC coh. norm.                                | 0.2                         | 0.2         |                                                                         |
|            | NC other norm.                               | 0.5                         | 0.5         |                                                                         |
|            | $\sigma_{ u_e}/\sigma_{ u_\mu}$              | 2.8                         | 2.8         | ► Uncertainty on $v_{\underline{\rho}}$ xsection                        |
|            | W shape                                      | 0.2                         | 0.2         | Behavior of $\Delta$ resonance in nuclear medium                        |
|            | pion-less $\Delta$ decay                     | 3.6                         | 3.6         |                                                                         |
|            | SK detector eff.                             | 2.4                         | 2.4         |                                                                         |
|            | FSI                                          | 2.3                         | 2.3         |                                                                         |
|            | PN                                           | 0.8                         | 0.8         |                                                                         |
|            | SK momentum scale                            | 0.6                         | 0.6         |                                                                         |
|            | Total                                        | 27.2                        | 8.8         | :                                                                       |
|            |                                              |                             |             |                                                                         |

## On-going "New" Studies

Cross section measurements at ND280:

- Cross section studies in water using FGD2 and P0D
- Multi-nucleon activity at the vertex (FGD1)
- Inter-subsystem timing calibration:
   Expand angular coverage (backward tracks, MEC enhancement at high Q²)
- CC1 $\pi$  momentum measurement

Additional info for analysis from p beam test @ TRIUMF:

- -Pion FSI and secondary interaction study (DUET)
- -Pion beam on WC

## ND280 Upgrade for T2K (T2HK)

- Several studies being performed for a possible upgrade
- → beneficial for T2HK as well. Undergoing study.
- Water target with vertex information
  - water based scintillator for P0D/FGD
  - high pressure TPC, fiber tracker:
    - \* close to Oxygen, much lower energy threshold
  - > water detector at the basement (B2) of ND280
- Enhancement on side/backward going tracks
  - Trip-t electronics upgrade or better calibration
- Neutrino-nucleon cross section for model input
  - D2O and CH2 targets for FGD/P0D

## ND280 Capability by End of T2K

- •We need to consider the ultimate capabilities and limitations of ND280 in several areas to stimate further upgrades and new ND needs.
- •But, it is not obvious how to estimate the future errors on neutrino interactions and cross section.
- •We will expect to have completed the following measurements before HK:
  - Measurements on oxygen
  - ► Irreducible uncertainty in 280m → 295km flux extrapolation
  - > Measurement of the  $\nu_{_{e}}$  contamination and xsection
  - Measurement of NC backgrounds
  - Coverage at large Q<sup>2</sup> phase space
  - > Right-sign/wrong-sign separation in anti-nu mode

# Outline

- NA61/Shine
- (Upgraded) ND280
- Additional Near Detector
- 1kton Prototype

#### Neutrino Flux



- •Beam flux available at different beam planes.
- Ongoing studies on beam errors.





#### Far/Near Ratio



#### Additional Near Detector Sites



- •Investigation of possible sites just started.
- •Original T2K proposal included a 2km site along Tochibura direction.
- •In the case we will choose Mozumi we will need a new location a bit more distant than ~2km (eg 2.8km). To be looked at.
- •2006 civil construction cost at 2km: ~\$11.2M (T. Kajita)
- •We will need to buy the land and estimate the costs.

#### Additional Near Detector

- Adopted technology is WC.
- •Advantages:
  - Same detector as far detector → minimize error propagation.
- •Location:
  - More distant from target than 280m, to minimize the near to far flux extrapolation.
- Currently two approaches:
  - New Near Detector (UK, more contributions welcome)
    - Nominal 1kton at 2km
    - Currently, size and location being optimized
  - Water Column (M. Hartz, M. Wilking)
    - Currently, location being optimized

#### **New Near Detector**





•"Nominal" 1kton, size 11mx11m as K2K 1kton.

•Muon Range Detector (MRD) to measure the muon energy.

•"Nominal" local baseline at 2km.

•Ongoing work on studying cross section errors. 0.6 to 1.5 2 2

- •Coming soon studies of pile-up, OOFV, sand muons.
- •Sensitivity studies under-way optimize the size and location of the detector.



#### Water Column



- •Minimize dependence on neutrino interaction sampling the beam at several off-axis angles.
- •Favoured <1km baseline from engineering point of view.
- Possibly add brine (Konaka) around detector to stop muons.

# New Near Detector Technologies: LAPPD\*s Approach UK exploring

Currently limited by PMT transit time spread to 2-5ns (per photons) LAPPD collaboration has shown the benefit of sub-ns resolution

- –Improved vertex resolution
- -Improved pattern recognition



T. Xin, I Anghel, M. Wetstein, M. Sanchez



\*Large Area Picosecond Photo-Detector

## LAPPDs Approach

Development of large-area, relatively inexpensive Micro-Channel Plate (MCP) photo-detectors

- 8" x 8" phototubes = 'tile' (large active area)
- Gain >= 106with two MCP plates
- Transmission line readout -no pins!
- Fast pulses + low TTS ~30ps

Currently transitioning from development through commercialization. First test in a WC tank: Annie (Atmospheric Neutrino Neutron Interaction Experiment)





# Outline

- NA61/Shine
- (Upgraded) ND280
- New Near Detector (NND)
- 1kton Prototype

## 1 kton WC Prototype Detector

Japan, 2013/06: Awarded grant-in-aid for ~\$1.2M.

Goals of the Prototype Detector (Shiozawa):

- •Final test of O(100) photo-sensors
  - give green signal to the mass production
- Feasibility study of HK water sealing
  - Polyethylene linear construction and hole check, drain water structure, penetrating anchors...
- Other possible items to be tested
  - > DAQ electronics (under water?)
  - Outer detector photo-sensors
  - > Automated calibration system
  - Other elements, e.g. black sheet, Tyvek sheet, PMT covers, PMT support structure ...

#### **Timeline**



assuming budget being approved from JPY2016

#### **Timeline**



#### Locations

#### •Kamioka option:

use of EGADS tank (200ton) at Kamioka mine (ID sensor x 180, OD sensor x 60) or new detector at Kamioka mine (new cavity cost ~\$1.5M)



#### •K2K option:

- 1 kton @KEK. ~600 photosensors can be tested. Water system is there.
- •Tokai option:
  - It can potentially used a T2K/HK ND.
  - New hole to be escavated.
- Escavation costs, crane, other utilities not covered in grant-in-aid
- •Welcome international contributions in part of the photosensors, electronics, DAQ, water system if needed..  $_{29}$

#### Locations

#### •Kamioka option:

> use of EGADS tank (200ton) at Kamioka mine (ID sensor x 180, OD sensor x 60) or new detector at Kamioka mine (new cavity cost ~\$1.5M)

•K2K option:

1 kton @KEK. system is there.

•Tokai option:

It can potentially

New hole to be

Escavation costs

Tokai option:

 Hole could be re-used in the future for the NND.

 We may potentially get some physics for T2K.

 Logistically the most difficoult to organize.

EGADS 200t tank

ested. Water

vered in

grant-in-aid

 Welcome international contributions in part of the photosensors, electronics, DAQ, water system if needed.. 30

# Conclusions

#### Conclusions

- •Several detector are complementary to achieve the best physics from Hyper-Kamiokande
- •NA61/SHINE (or equivalent future experiment) needed for beam hadronization studies.
- •ND280 detector will be upgraded for T2K, possible further upgrades for T2HK
- Additional near detector beyond ND280 being investigated (NND, and Water Column)
- •1kton WC prototype approved and being used for testing PMT and new ideas.