CALIBRATION FOR HYPER-K

Neil McCauley
University of Liverpool

Measurement of oscillation parameters

- Sensitivity of HK dependant on total systematic uncertainty
- SK detector systematics are significant for T2K
 - We will need to do better in HK.

Source of error for v_e appearance arXiv:1311.4750

Error source [%]	$\sin^2 2\theta_{13} = 0.1$	$\sin^2 2\theta_{13} = 0$
Beam flux and near detector	2.9	4.8
(w/o ND280 constraint)	(25.9)	(21.7)
ν interaction (external data)	7.5	6.8
Far detector and FSI+SI+PN	3.5	7.3
Total	8.8	11.1

Source of error for v_{μ} disappearance PRL, 111, 211803

Source of uncertainty (number of parameters)	$\delta n_{\rm SK}^{\rm exp}/n_{\rm SK}^{\rm exp}$
ND280-independent cross section (11)	6.3%
Flux and ND280-common cross section (23)	4.2%
Super-Kamiokande detector systematics (8)	10.1%
Final-state and secondary interactions (6)	3.5%
Total (48)	13.1%

What do we need to measure?

- Electronics
- PMT Response
 - Timing
 - Gain
 - Angular Response
 - Faulty PMTs
 - Relative PMT efficiency
 - Overall detector gain
 - Multi and single photon effects

- Detector Properties
 - Water
 Attenuation/Extinction
 - Scattering
 - Reflections from surfaces
- Physics sources
 - Energy scale
 - Reconstruction
 - Event shapes

Calibration Strategies

- Deploy sources
 - Light sources
 - Radioactive sources
- Collect data for calibration insitu
 - Michel Electrons
 - Cosmic muons
 - Atmospheric neutrinos
- Build sources into the detector
 - Optical fibres
 - Embedded sources
- Precalibraton
 - Careful measurements before/during assembly

Deploying sources

Current Deployment Systems

Semi-automatic

1D calibration System (manual)

Volume Calibrated: ~ 50k m³

SNO

Semi-automatic

2D calibration System (manual)

Volume Calibrated: ~ 1k m³

Borexino

Fully manual

3D calibration System (manual)

Volume Calibrated: ~ 0.3k m³

Deploying sources

Sources under discussion

- ¹⁶N two options 6MeV γ + β s
 - DTG neutron source deployed directly into the detector.
 - SK Style
 - Activate CO₂ with DTG neutron source and flow gas into detector.
 - SNO style.
 - Tagged γs
- Cf Ni source (9 MeV γ)
 - Self triggered
 - R&D still required
- Other sources discussed
 - pT source 19.8 MeV γ. Deployed once in SNO.
 - LINAC source.
 - Expensive option (multiple units required)
 - Not currently considered.

The Super-K D-T generator: In action

- During the calibration process the DT generator is raised 2m above the original fire position to reduce shadowing/interaction with the device
 - Basically unavoidable
- Causes diffusion of events along axis of this motion as water is displaced
- Range of utility in the vertical direction is limited
- Device is not so mobile

Nickel source

- Capture of thermal neutrons by nickel
 - Produces 9 MeV γ-ray.
 - Typically ⁵⁸Ni (n:γ) ⁵⁹Ni reaction.
- Ni source with ²⁵²Cf fission source embedded.
- R&D Ongoing

LED Pulsers

Use an LED rather than a laser as a light source.

Advantages

- Cheap per channel cost. (~£10 for LED and basic driver electronics)
- Compact device possible
- Stable wavelength distribution ~ 10 nm spread
- Wide range of wavelengths available
- ~1 ns pulses possible.
- Simple coupling to fibres

Disadvantages

- Higher current requirements
- Large light loss into fibres.

ANTARES Beacon

- Developed to provide a light source on each ANTARES photo-module.
- Permanently deployed.
- Can flash single or multiple LEDs at once, depending on calibration required
 - Different systems to do this.

Basic design of ANTARES system

 Use a modified Kapustinki design.

- Discharge a capacitor into LED.
- Uses a fast 2 transistor switch.
- Inductor to "sweep out" charge.
 - Reduced tail.

LEDs in SNO+

Updated LED drivers for HK

- We plan to develop an updated driver circuit for HK exploiting what we've learn from ANTARES and SNO+
 - Include the best of both systems with new improvements
 - Update electronics to more modern standards, use FPGAs for example
- Need to finalise targets for
 - Pulse width
 - Number of photons
 - Decision on number of LEDs to drive simultaneously (>1?)

Possible uses for LED

- Embedded light source on PMT support
- Potted in a diffuser ball as an isotropic light source
- As a beacon on other calibration sources
- As the light source for a "muon source".

Embedded Light Sources

- Source for embedded light source in HK PMT support
 - Similar to SNO+ fibre system.
- Could be deployed as a fibre system as in SNO+
- Alternatively could be deployed directly in detector
 - Particularly interesting if we have "wet-end" electronics.
- Useful for measuring/monitoring
 - PMT timing
 - Attenuation/extinction
 - Scattering

For an isotropic source

- Adapt the laserball design from SNO.
 - Fibre in the centre of a quartz ball filled with beads potted in a gel.
 - Provides isotropic light.
- Replace fibre with LEDs.
 - Will be more isotropic as the light from a LED is more isotropic than from a fibre.
- Can potentially stay in the detector
 - Can run calibrations without running the laser system.

A fake muon source

- A source to simulate muons and test reconstruction.
- A narrow transparent tube with a light source producing almost parallel light at one end.
- Light emitted at the Cherenkov angle.

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

independent of n_i

As
$$\theta_1 \rightarrow 90^{\circ} \sin(\theta_2) \rightarrow 1/n_c$$

Light emitted at Cherenkov angle.

Plans for muon source

- We plan to pursue this as an R&D project in the UK
- Produce a short source for testing.
- Use multiple LEDs to "cover" range of Cherenkov spectrum
- Plan to
 - Test angular distribution
 - Tune LED intensity
 - Test light deployment and absorption methods.

Fraction of Reflected Light from Air to Glass / Plastic

Source Beacon

- LED source is small and compact and could be attached to any calibration source.
 - Or to the source deployment system
- Can therefore use as a beacon to determine the position of the source in the PMT co-ordinate system.
 - Collect multiple pulses determine mean PMT time for direct light.
 - Reconstruct position of LED
 - Determines source position independent of source effects.
- Could also act a as light source for a camera system if one is deployed.
 - Flash LED at a high rate.

Conclusions

- Calibration will be critical to meet the physics goals of HK
- A wide a varied program will be required
- Light sources
 - LED pulsers being pursed in the UK
- Radio active sources
- Calibration infrastructure
- Plenty of scope for European involvement.