

Canadian HK Photosensor and Calibration Work

Thomas Lindner | TRIUMF HK-EU Meeting | Dec 2013

Outline of talk

Canadian-HK people working on two separate HK PMT projects:

- PMTs with enhanced photon traps.
- PMT Test Facility
 - This is actually a mixed T2K/HK project.

Most of the slides/content are stolen from Firat Nurozler (Co-op student) and Hiro Tanaka

PMTs with photon traps; aka enhanced PMT

- The idea: use a 12" PMT with a photon trap for HK, instead of 20" PMT.
- The hope: that an enhanced 12" PMT will provide equal/better photon collection at a lower cost.
- Test idea using GEANT4 simulation.

Possible HK PMT Configurations

Super-K Style PMT

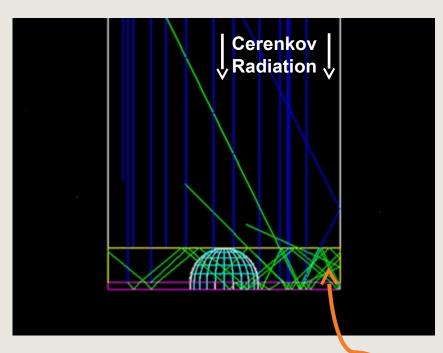
- 20-inch PMT
- Photon collection depends on PMT size.

PMT with Photon Trap

- 12-inch PMT (cost efficient)
- PMT-missing photons are collected.
- Components:
 - Dichroic mirror
 - Broadband mirror
 - Wavelength shifter plate
- Simulated five configurations using Geant4.

Enhanced photon traps

3D Model


dichroic mirror 12" PMT WLS

Trap: 12-inch PMT

3-cm-thick blue-to-green WLS plate

Dichroic mirror + broadband mirror

Geant4 Visualization

F. Nurozler

WL shifted photons (green)

WLS and Dichroic Mirror Properties

WLS Optical Spectra

Dichroic Mirror Reflectivity

0.7

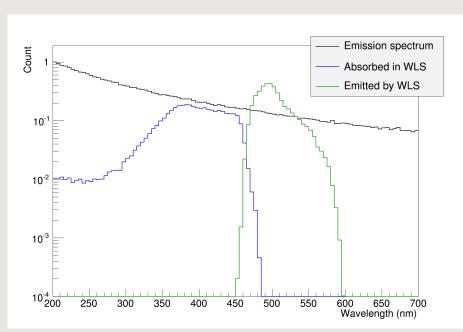
0.6

0.5

0.4

0.3

0.2


0.1

70

incidence angle (degree)

60

50

Saint-Gobain BC482A

F. Nurozler

Iridian Spectral Technologies, custom dichroic mirror

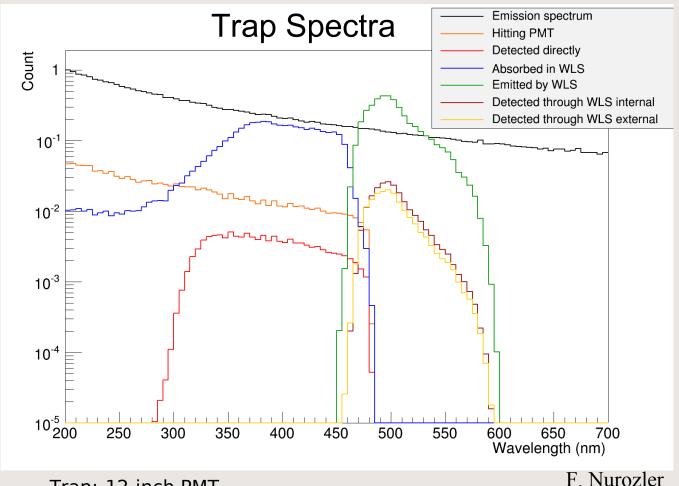
Wavelength (nm)

650

600

550

500


450

400

350

Trap Performance

Trap: 12-inch PMT

3-cm-thick blue-to-green WLS plate

Dichroic mirror + broadband mirror

Internal:

No interaction with dichroic mirror.

External:

Secondary photon reflected from dichroic mirror before hitting PMT.

12" PMT + 3cm WLS

12" PMT + 3cm WLS + side & back mirrors

+ WLS dichroic mirror

12" PMT + 15cm WLS

+ side & back mirrors

12" PMT + 3cm WLS + side & back mirrors

12" PMT + 5mm WLS + side & back mirrors

+ dichroic mirror

+ dichroic mirror

+ dichroic mirror

+ side mirrors

Photon Collection Performance of 100 cm Traps

Configuration Primary Internal External Int+Ext 20" PMT (SK)

WLS or water

Ball PMT

30cm (~12")

efficiency.

1* 0 0

0.43

0.42

0.34

0.34

0.35

*All values are normalized by the 20-inch PMT collection

0.38

0.43

0.56

0.44

0.21

0

0.13

0.47

0.35

0.41

1

0.81

0.98

1.37

1.13

0.97

0.38

0.56

1.03

0.79

0.62

0 PHOTOCATHODE

+ side & back mirrors

12" PMT + 15cm WLS

+ side & back mirrors

12" PMT + 3cm WLS + side & back mirrors

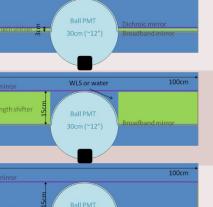
12" PMT + 5mm WLS + side & back mirrors

+ dichroic mirror

+ dichroic mirror

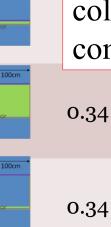
+ dichroic mirror

Photon Collection Performance of 100 cm Traps Primary Internal External Int+Ext


Configuration 20" PMT (SK) 1* \mathbf{O} \mathbf{O}

12" PMT + 3cm WLS

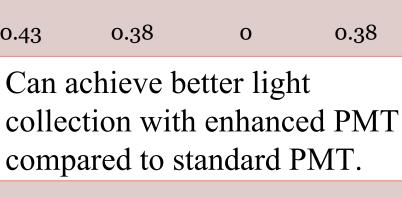
+ side mirrors 0.43 0.38 0 Can achieve better light 12" PMT + 3cm WLS


+ WLS dichroic mirror

WLS or water

30cm (~12")

efficiency.


0.35

*All values are normalized by the 20-inch PMT collection

0.56

0.44

0.21

0.47

0.35

0.41

0.38

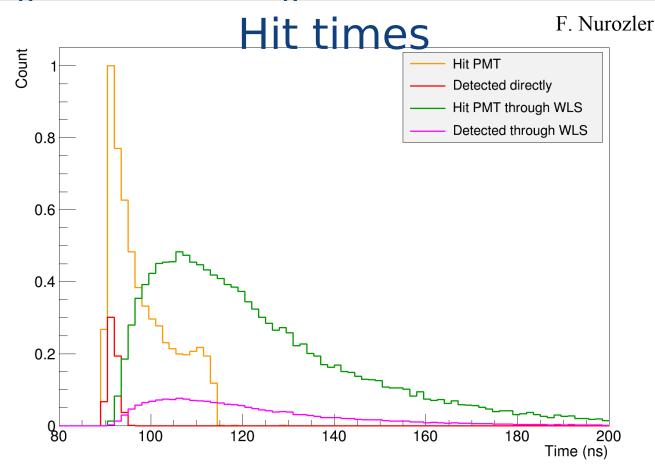
1.03

- 0.98

1

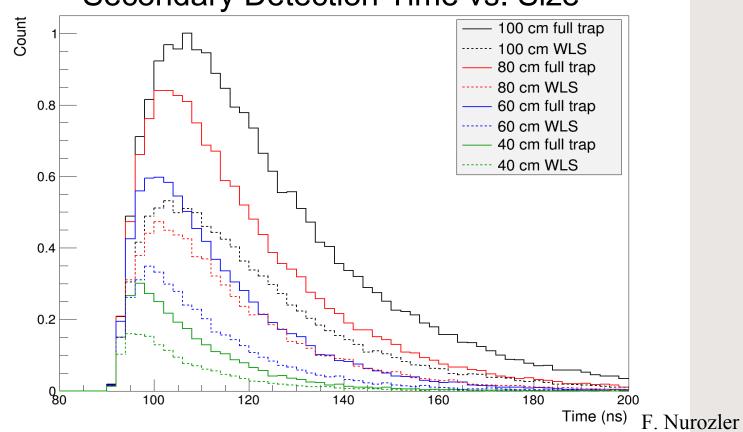
0.81

1.37


^{0.79} 1.13 0.62 0.97

Time of photons from trap

- But we find a big problem: the time of the photons from the trap are substantially delayed compared to the direct.
- Will seriously degrade the HK timing resolution.

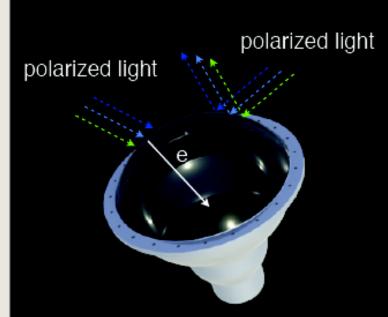

Presumably not acceptable for HK.

Hit Time: Trap Size Analysis

Full Trap: 12-inch PMT
3-cm-thick WLS plate
Dichroic mirror + broadband mirror

WLS: 12-inch PMT3-cm-thick WLS platebroadband mirror plated WLS sides

Conclusion: photon-trap


- Degraded ime resolution probably not acceptable for HK inner detector completely.
- But could still consider adding additional enhanced PMTs to the baseline 20" PMTs; increasing photo-cathode coverage for a marginal additional cost.
- Also consider enhanced PMTs in HK outer detector.

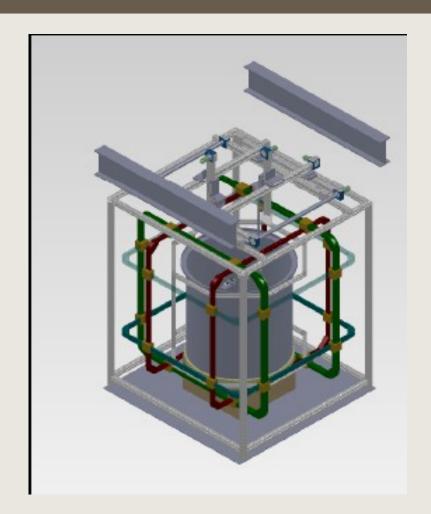
Future Plans

- The trap concept needs physical verification using full HK simulations; help appreciated.
- Cost analysis required.
- Investigating other dichroic mirrors and WLSs.

PMT test facility (PTF)

- Study response of R3600 20" PMT to light across (in water):
 - wavelengths (330-550 nm)
 - incident angles to surface
 - locations on the PMT
 - polarization
- Light reflected from the PMT affects response of other PMTs (in water)
- Study reflectivity of R3600 20" PMT across same parameter space,

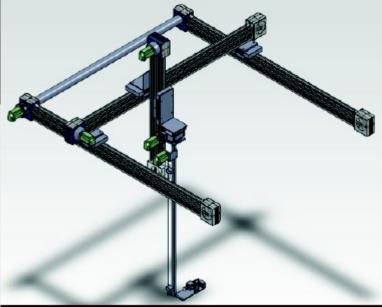
PMT Test Facility (PTF) @ TRIUMF

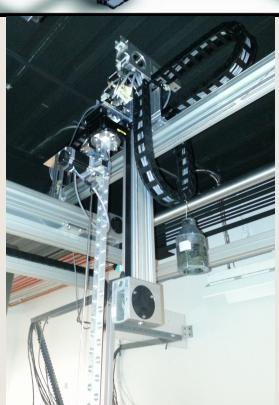

Requirements:

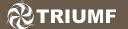
- The primary requirements of the PTF:
 - House and operate a 20" R3600 PMT in water
 - Shield the PMT from stray magnetic fields (<100 mG)
 - Direct collimated, polarized monochromatic light at a large range of relevant wavelengths (300-500 nm) at any point of the PMT photocathode surface at all inward incident angles.
 - Detect light reflected from the PMT at any outward incident angle and at all source wavelengths.

PTF: Overall setup

- Pair of optical heads: each head has a laser fibre and a measurement PMT.
 - Each optical head can either fire laser light at 20" PMT or measure reflected light.
- Two gantries with 5D control of optical heads (3 translation, 2 rotation axes).
- Active/Passive magnet shielding.
- Water tank and circulation system.


PTF: Positioning Gantries


- 3D translation along belt drive system from Rexroth components.
- 2 rotation axes; tilt motor must be out of water -> use worm gear to tilt optical head at end of long arm.
- Two gantries identical, but rotated around Z axis.



PTF: Motor Control

- Motors driven by Galil controllers controllers implement hardware limit switches.
- MIDAS DAQ; front-end programs communicate over TCP/IP with Galils.

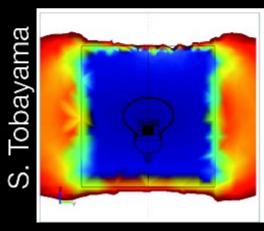

MIDAS motor control page


PTF: Second Gantry

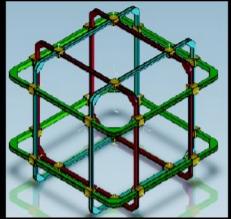
- Milestone last week with first movement of second gantry.
- Example videos here:
 http://ladd00.triumf.ca/~lindner/ptf/ptf_2gantries_2.mp4
- Also working on an improved optical housing.
- Optical housing has
 - Fibre and collimator for laser light.
 - Two PMTs; one for monitoring laser, other for measuring reflected light.
 - Tilt angle measurement.

Magnetic Shielding

- water tank (Barr plastics):
 - 360 gallon (48" diameter x 50.75 " height)
 - high density black polyethylene tank
- Magnetic shielding is via


0.4

0.3


0.2

0.1

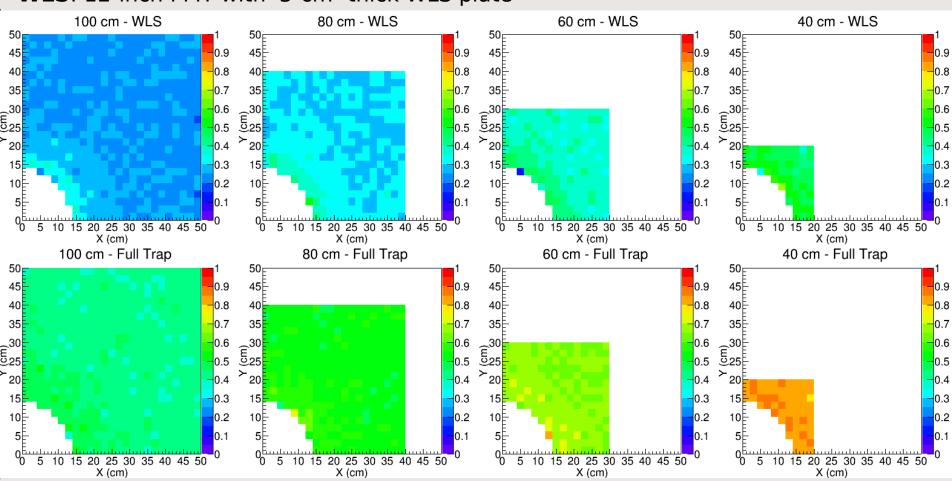
- active cancellation (Helmholtz coils)
- passive shielding (GIRON)
- FEM analysis: < 10 mG in relevant regions

PTF Status Summary

- Lots of new help with project (Shimpei, Corina Nantais, Sophie Berkman, Mark Scott, Tom Feusels), lots of progress recently.
- Basic gantry movement now working; needs full commissioning and collision avoidance code.
- Starting to fully test Helmholtz coils and passive shielding.
- Light-tightening room.
- Water circulation: components bought, but still lots of work.
- Should be able to start some real tests of small PMTs and black-sheets within first half of 2014.

Conclusions

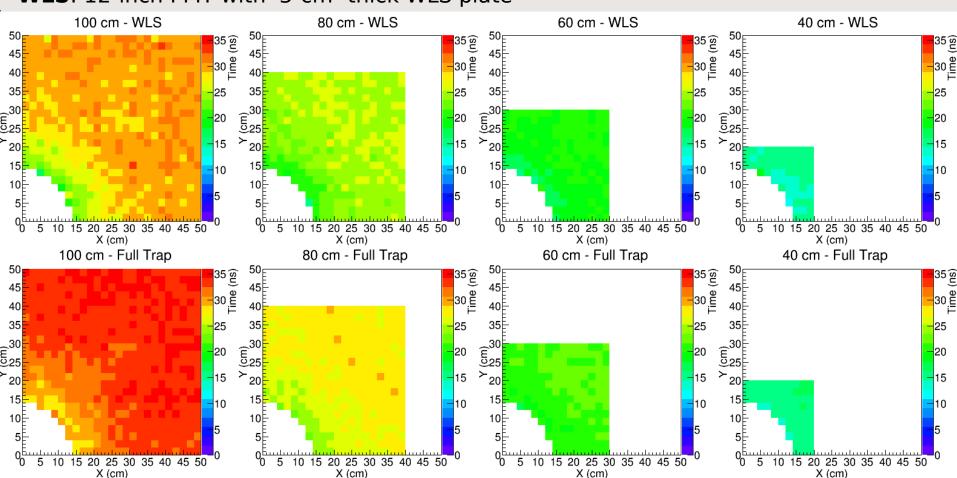
- Mixed results regarding PMTs with photon traps: some possibilities remain, but timing resolution is a major problem.
- PMT Test Facility has made a lot of progress recently.
 Hope to have first real results this year.
- Other work as well: UBC student working with TRIUMF engineers on ideas for HK manipulator arm.



Backups

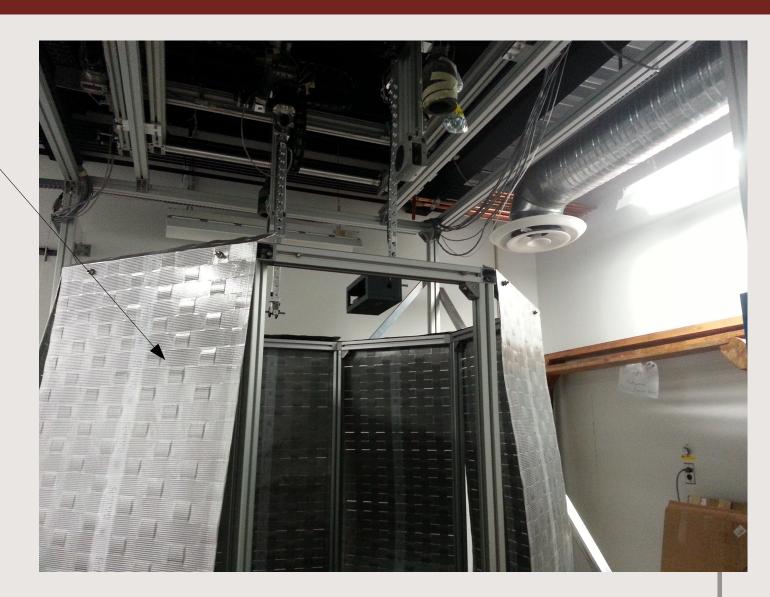
Trap Size Analysis: Secondary Collection Efficiency

WLS: 12-inch PMT with 3-cm- thick WLS plate



Full trap: 12-inch PMT, 3-cm-thick WLS with dichroic mirror trap.

Trap Size Analysis: Secondary Detection Time Delay



Full trap: 12-inch PMT, 3-cm-thick WLS with dichroic mirror trap.

Passive Magnet Shielding

GIRON

