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SNO and SNO+: Laserball

Deployed, isotropic optical source.

Quartz flask, silicone gel + diffusing glass spheres
Nitrogen Dye laser (337,369,385,420,505,619nm)
ND filters to adjust intensity | | '
Flexible umbilical of optical fibres |
Challenges \

— Source isotropy

— Intensity variations between pulses
— Exact location of source

— Contamination during deployment
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New laserball for SNO+




SNO+ : ELLIE
External LED/Laser Light Injection Entity

ELLTE

TELLIE — Timing
calibration (LED)

SMELLIE — Scattering
Module (laser)

&

 AMELLIE — Attenuation

Monitoring (LED)



TELLIE

91 nodes

14.5° (20% peak Intensity)
— All PMTs illuminated by >1 beam

505nm LED coupled to plastic optical fibres

Pulses ~1.8ns rise-time, 6.6ns fall time

Dedicated TELLIE runs (kHz) or embedded in
data stream (~10Hz).

— Main purpose: PMT timing calibration

— Also test PMT mapping, rope position (shadowing)
AV position (reflections)



SMELLIE

* 4 sub ns pulsed diode lasers
— 375,407, 446 & 495nm

* Bespoke laser switching unit
* Internal monitoring system
* 5x14 mechanical-relay Optical Fibre Switch

e 12 quartz optical fibres, 4 mounting points, 3
directions (0,10°,20°)

* GRIN lens collimation ~7 degree ~top-hat
opening angle
— Main purpose: Scattering measurement
— Also test reflections, trigger timing effects?




AMELLIE

Similar setup to TELLIE but use quartz fibres
and range of wavelength LEDs (exact
wavelengths to be decided)

4 injection positions, 2 angles per position
Wavelengths: 400, 520nm

Uniform emission of LEDs allows attenuation
to be monitored over time.



. PMT Calibrations: PCA

* remove time offsets between PMTs (arising from eg.

Cable delays)
e Correct for discriminator ‘walk’ effect.

 Characterise PMT charge spectrum
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PCA considerations

e Central laserball

— We correct all hits for transit time from source,
but uncertainties in deployed source position

— Multiple points to account for rope shadowing

 TELLIE

— Different driver for each fibre. Different delays
relative to trigger

— Derive differences using peak times from PMT
that sees 2 fibres.



SMELLIE Analysis

Select PMT hits in angle and time.

* >95% purity, >60% efficiency for scattering in
water

Different lasers:

* sensitivity to Rayleigh A* dependence

* Absorption/reemission

0, 10°, 20°:

* different pathlengths through acrylic and water
to break correlations

Scale scattering in MC to match data



In-beam hits

Reflections off the outside of the AV
Scattered events

Reflections off the inside of the AV
Reflections off the PSUP

Multiple effects

SNO+ Preliminary

MC simulations, water-filled detector
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Optical Analysis (OCA)

* Observable:
— PMT integrated occupancy as a function of laserball
position (~30 positions)
* Parameters:

— Media attenuations, PMT angular response, laserball
distribution

e Method:

— Multi-parameter fit to all positions occupancy data
— Separate fit at each wavelength
— Source position crucial input

— Interpolate measured parameters between
wavelengths

— Subtract scattering from total attenuation



OCA considerations

Time consuming calibration
— 30 positions x 6 wavelengths x ~¥15 minutes

But need to monitor optics over time

— Concentrator degradation

Uncertainty from source position in SNO,
improve for SNO+

— Cameras

— LED on deployment mechanism

Rope shadowing complicates things



Radioactive sources

Calibration source Details Calibration
Pulsed nitrogen laser 337, 369, 385, Optical &
(“laserball™) 420, 505, 619 nm timing calibration
1N 6.13-MeV y rays Energy & reconstruction
*Li B spectrum Energy & reconstruction
BICf Neutrons Neutron response
Am-Be Neutrons Neutron response
‘H(p, y)*He (“pT") 19.8-MeV y rays Energy linearity
Encapsulated U, Th B—vy Backgrounds
Dissolved Rn spike B -y Backgrounds

In situ**Na activation -y Backgrounds
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6.13MeV Y

* compton scatter e’s
* Tdistribution around 5MeV

Tune global collection efficiency

1°N Analysis

Tests of optical model.

Determine reconstruction
systematics (position and energy)
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t,,=0.770 s

N. Tagg et. al.
NIM A489 (2002) pp. 92-102 8 I_i 14,0838 5
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Challenges:

* Maximise decay volume +——

for source rate -> big
source

* Longer umbilical -> less
decays in chamber -

* Thin shell for beta )
penetration -> strength?

* Reflections off stainless
steel not well
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No. of Events per hit bin

No. of Events per hit bin
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A.W.P. Poon et al

NIM A452 (2000) pp. 15-129 pT 3H(p,T)4He

* 19.8MeV mono-energetic
o gamma

Neutron backgrounds from:
2H(t,n)*He, 3H(d,n)*He,
3H(t,nn)*He

Gas discharge
P o ~ lon accelerator
ScandiumTritide target
Fig. 1. Cross sectional drawing of the pT source. * 60Cm Iong’ Sta | N IeSS StGEI

cylinder

22



Backgrounds likely
to reconstruct
further from source

£ /MeV
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Figure 8.2: The distribution of the reconstructed distance from the source
versus energy showing that the background events are more likely to re-
construct far from the source. Also shown is the placement of the cut at

r=150cm.
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Figure 8.3: The distribution of the cosine of angle between the event directi

and the vector from the source to the event vertex versus energy. y-raysfrc
the source are expected via Compton scattering to point along this vectc
while the background contains no correlation. The cut is place at cos(f)
0.85.



pT challenges
& analysis

Only deployed once

— (single axis)
Large source, difficult to operate

Limited operational lifetime

Time variation in output

‘partially’ remove contaminants with analysis cuts
-> high energy point for energy scale

Data:MC discrepancies at high radius



Materials Cleanliness

 SNO water: 10'%g/g U, 10*> g/g Th
* Leaching?

 Radon emanation

e Tape-lifts -> XRF

* Ge screening

— Boulby Canberra model BE3830P built to custom
ultra-low background specification with carbon
fibre window for low energy acceptance

— Resolution 0.45 keV at 5.9 keV; 0.72 keV at 122
keV:; and 1.90 keV at 1332 keV.

— sensitivity at the tens of parts per trillion (ppt) to
uranium and thorium.




Other considerations: deployed
sources

Shadowing

Simple geometry — ease of simulation
Double encapsulation

No sharp edges on sources

No loose parts — screws etc

Strength — pressure

Radon ingress during source deployment
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