

Grid storage - types, constraints and availability

Latchezar Betev Offline week, April 9, 2008

GRID and CAF user forums

- New initiative, regular (bi-weekly) discussion on GRID and CAF
 - From user perspective practices, tips, latest news
 - User-suggested topics
 - Immediate expert support, other than by e-mail, Savannah
- First forum on 27 March 2008
 - Telephone conference (no need for specially equipped rooms)
 - 22 participants
 - Positive feedback
- Second forum today

GRID and CAF user forums (2)

- Forum agenda flexible
 - The idea is to cover topics suggested by users
 - And to present new development, which is not yet 'popularly used'
 - Please do not hesitate to propose any topic!
- Announcements
 - alice-project-analysis-task-force
 - alice-off
- Next forum 24 April 2008

GRID storage

- Basic types MSS, disk
- What are the differences, constraints
 - In a Grid world, where the user does not know which SE is of what type
 - Which storage to use
- Availability of storage
 - Why do the SEs fail
 - How to figure when the job failures are due to storage
- Production practices

GRID storage types - MSS

- Mass storage System all data written to this type of storage goes to tape
 - Available only at the large T1 centres
 - Very complex internal structure
- Pros
 - Configured to store very large amounts of data (multi-PB)
 - Still cheaper than disk-only storage
 - Safer, but not by a big margin (see next slide)
- Cons
 - Fast (random) access to data is difficult
 - Disk buffer is much smaller than the tape backend
 - Easy to fall victim to a race condition multiple users reading different data sample, thus trashing the disk buffer

GRID storage types – MSS (2)

- Why tape (if disk nowadays is cheap and reliable)
 - Strategic decision of all T1s many years ago
 - Investment in tape system is substantial
 - Building of the infrastructure takes a long time
- Current trends
 - Secondary and all tertiary storage functions and utilities, such as disk backup and data archiving, i.e. RAW and ESDs

GRID storage types – MSS (3)

- Storage types
 - dCache developed at DESY/FNAL
 - CASTOR2 developed at CERN
- In ALICE
 - RAL, CNAF, CERN CASTOR2
 - CCIN2P3, FZK, NL-T1, NDGF dCache
- Both dCache/CASTOR2 implement reading/writing through the xrootd protocol
 - CASTOR2 plug-in
 - dCache protocol emulation

GRID storage types – MSS (4)

- ALICE computing model custodial storage
 - RAW data (@T0 CERN + one copy @T1s)
 - ESDs/AODs from RAW and MC production (copy from T2s, regional principle)
- From user point of view
 - Reading of ESDs/AODs from MC/RAW data production
 - Writing of very important files
 - The underlying complexity of the storage is completely hidden by AliEn

Use of MSS in the everyday analysis

- For reading of ESDs nothing to be done
 - Access typically through collections/tags
 - Automatically taken care of by the AliEn JobOptimizer
 - Users should avoid JDL declarations like

Requirements = member(other.GridPartitions, "Analysis");

- The above interferes with the JobOptimizer and may prevent the job from running
- For writing
 - only for copy of important files JDL, configurations or code, never for intermediate or even final output of analysis jobs

Use of MSS in the everyday analysis (2)

- Top 5 reasons to avoid writing into MSSenabled storage
 - 1. Access to MSS is slow, recall time from tape is rather unpredictable
 - If your file is not in the disk buffer, you may wait up to a day to get it back
 - 3. With the exception of very small number of userspecific and unique files, all other results are reproducible
 - 4. MSS is extremely inefficient for small files (below 1GB)
 - 5. More and more disk storage is entering production it is also very reliable, chances that your files will be lost are very small

Use of MSS in the everyday analysis (3)

- Summary of good user practices
 - Use MSS only for backing up of important files, keep the results of analysis on disk type storage
 - Always use archiving of files. The declaration below will save only one file in the MSS, there is no time penalty while reading

```
OutputArchive={"root_archive.zip:*.root@<MSS>"};
```

GRID storage types - Disk

- Disk all data written to this type of storage stays on disk
 - Available everywhere, T0, T1 and T2 centres
 - Simple internal structure typically NAS
- Pros
 - Fast data access
 - Price per TB is comparable to tape
 - Very safe, if properly configured RAID, same as tape
 - PB size disk storage can be easily build today
- Cons
 - None really ideal type of storage

GRID storage types – Disk (2)

- Storage types
 - dCache developed at DESY/FNAL
 - DPM developed at CERN
 - xrootd developed at SLAC and INFN
- In ALICE
 - All T2 computing centres are/should deploy xrootd or xrootd-enabled storage
- Both dCache/DPM implement reading/writing through the xrootd protocol
 - DPM plug-in
 - dCache protocol emulation

GRID storage types – Disk (3)

- ALICE computing model tactical storage
 - MC and RAW data ESDs (T0/T1/T2)
- From user point of view
 - Reading of ESDs/AODs from MC/RAW data production
 - Writing of all types of files
 - Important files save 2 replicas (@storage1 and @storage2)

Use of Disk storage in the everyday analysis

- For reading of ESDs nothing to be done
 - Access typically through collections/tags
 - Automatically taken care of by the AliEn JobOptimizer
 - Users should avoid JDL declarations like

Requirements = member(other.GridPartitions, "Analysis");

- The above interferes with the JobOptimizer and may prevent the job from running
- For writing unrestricted
 - Through declarations: file@<SE name>
 - No user quotas yet
 - Easy to change from one SE to another

Use of Disk storage in the everyday analysis (3)

- Summary of good user practices
 - Use disk storage for all kind of output files
 - Report immediately any problems you may encounter (inaccessibility, sluggishness)
 - Preferably use archiving of files. The declaration below will save only one file in the disk storage, there is no time penalty while reading
 - Store 2 copies of your important files at 2 different SEs (maximum safety)

Current SE deployment status

- User-accessible storage
 http://aliceinfo.cern.ch/Offline/Activities/Analysis/GRID_status.html
- •The local support needs some improvements, however the stability is very reasonable

SE Name	AliEn name	Description	SE Status	Size	Used
1. Subatech - DPM	ALICE::Subatech::DPM	DPM (disk), general use	ок	11.64 TB	0.132 GB
2. SPbSU - DPM	ALICE::SPbSU::DPM	DPM (disk), general use	ок	5.402 TB	1.94 GB
3. Catania - DPM	ALICE::Catania::DPM	DPM (disk), general use	ок	45.63 TB	5.645 TB
4. Bari - dCache	ALICE::Bari::dCache	dCache (disk), general use	ок	4.005 TB	3.651 GB
5. CERN - Castor2	ALICE::CERN::Castor2	Castor2 (MSS), RAW data, ESDs	ок	931.3 TB	475.7 TB
6. CERN - se	ALICE::CERN::se	xrootd (disk), OCDB master, application packages	ок	2 TB	967.9 GB
7. GSI - se	ALICE::GSI::se	xrootd (disk), general use	ок	27.94 TB	20.05 TB
8. Legnaro - dCache	ALICE::Legnaro::dCache	dCache (disk), general use	ок	5.215 TB	930 GB
9. NDGF - dcache	ALICE::NDGF::dcache	dCache (disk), general use	ок	23.28 TB	8.82 TB
10. NIHAM - File	ALICE::NIHAM::File	xrootd (disk), general use	ок	39.12 TB	3.824 TB
11. Prague - Disk	ALICE::Prague::Disk	xrootd (disk), general use	ок	1.267 TB	94.28 GB
12. Torino - DPM	ALICE::Torino::DPM	DPM (disk), general use	ок	16.78 TB	1.015 TB
Total			12	1.088 PB	517 TB

Availability of storage - failures

- Software (predominant, short duration)
 - These gradually go down as the software matures and site experts gain experience in storage maintenance
- Hardware (long duration)
 - Site scheduled/unscheduled downtimes
 - Storage server failures (rare)
 - These will continue to exists on the same level as now, the only continuous data access is replication
 - If sufficient capacity exists

Availability of storage – Job errors

- Two classes of errors
 - AliEn: EIB (Error Input Box), ESV (Error Saving)
 - Obvious
 - ROOT (still AliEn codes): EE (Error Execution), EXP (Expired)
 - A bit more complex can be also caused by a problems in the code (f.e. infinite loop)
- What to do (as a first step)
 - Check SE elements status
 - Do not attempt to read data not staged on disk (check 'staged' status)

Production practices

- For efficient analysis the ESDs + friends should be on disk
- So far, the predominantly used storage was MSS@CERN
 - This is quickly changing in view of the rapid deployment of disk storage at T2s
- The output from the presently running productions (LHC08t, LHC08p LHC08u) is saved at T2 disk storage + copy @T1
- All past productions are staged on request on MSS and replicated to T2 disk storage

Summary

- The storage availability and stability is still the Grid's weak point
 - The progress in the past 6 months is substantial from 2 SEs to more than 15 used in production
 - The stability of storage is also improving rapidly
- New disk-based storage (at T2 sites) allows for more efficient data analysis
 - The primary copy of the output files of recent productions is stored at T2s (disk)
 - Old productions are replicated to T2s
- User Grid code should be modified to take advantage of the new storages
- Please report problems with storage immediately!