

SSD: DA + PREPROCESSOR STATUS

Panos Christakoglou

NIKHEF - UU

PEDESTAL DA STATUS

- > Pedestal DA is in AliRoot since last November
- > Sasha Borysov is the main developer
 - Main program ITSSSDpedDa.cxx and three support classes: AliITSHandleSSD, AliITSModuleSSD and AliITSChannel
- Some problems observed last December were addressed in the new version of the code used during the last cosmic run.
- > From the DAQ point of view everything was working without any problems.
 - □ Pedestal run type needed (was missing in December) --> FIXED
 - □ DA installed and running on all 3 of our LDCs
 - □ Calibration run used extensivelly during the last run
- Calibration files temporary saved on DAQ machine, then were sent to FXS with a fileID (was wrong! -> FIXED)
- Calibration data are stored as a TObjArray of AliITSNoiseSSD and AliITSPedestalSSD objects, one for each module
- > SHUTTLE preprocessor processes the files and saves calibration objects in the OCDB

Amount of data: 2.6 MChannels x sizeof(Float_t) = 10 MB/calibration run

PEDESTAL DA STATUS cont.

- > There was a firmware upgrade performed the week after the cosmic run
 - Online ZS
 - Online common mode subtraction
- > We need a new version of the DA code which will be compliant with the new hardware.
- > Sasha has all the tools to do this:
 - □ The new version will be ready well before the cosmic run
 - □ We plan to test this along with the new online QA code (AMORE) during the DAQ integration test scheduled for week 17 (starting on the 21st of April)

BAD CHANNEL MAP

- A bad channel map will be made off-line based on the analysis of the existing data.
- > This map will be uploaded to the DAQ DB from where the SOR script will load it to the LDCs.
- > During a pedestal run no bad channels will be suppressed
- The "pedestal DA" will use the static map
 - □ for the dynamic ZS threshold file for the FEROM
 - □ to produce the *updated* bad channel file for the OCDB
- > This new map will consist of the AND of the initial and the updated map of bad channels derived from analysis of the pedestal run.
 - □ In this way we can always, by hand, block any bad channels that an algorithm may not find, while having an automatic update all the time.
- > Two examples why we need two bad states:
 - static: ladder X shows reasonable noise and pedestal. However, we suspect a clock problem and no real data will come out: declare 'bad' by hand
 - dynamic: sometimes a hybrid does not switch on, while later it may recover: declare 'bad' at each pedestal run.

Amount of data: 2.6 MChannels x sizeof(Char_t) = 2.6 MB/calibration run

Work in progress - DA part not ready for the next run

GAIN CALIBRATION

- > Not really defined at the moment
- > If we define a pulser run for gain calibration we need a special "gain DA" to calculate a gain file which needs to be sent to the OCDB.
- > What we need to do in order to see if such a run is needed is:
 - □ To analyze the data taken at previous cases (2006)
- > If it is not needed then we declare equal gain on all the channels.
- > Otherwise we need to think about this option:
 - □ Gains may be different for p and n side, for A and C side, for layer 5 and 6

STATUS OF THE SSD PREPROCESSOR

Run types already implemented in the preprocessor:

PEDESTAL - PHYSICS - ELECTRONIC_CALIBRATION_RUN (will phase out)

	<i>G</i> RP	ACORD F	EMCAL	НМ		SSD	۸D	TO	TOF	TPC	TRD	VO	ZDC
					Preprocessor								
Preprocessor					DAQ DA								
DAQ DA					`								
DAQ FXS output					DAQ FXS output files								
files					DCS DP names	0							
DCS DP names					Preprocessor reads DPs	O							
Preprocessor reads DPs					·								
DCS DA					DCS DA	0							
DCS FXS output files					DCS FXS output files	0							
HLT DA					HLT DA	0							
HLT FXS output files					HLT FXS output files	0							

o = nothing to be done but OK = OK, but dependency missing

We don't need any dps during reconstruction - The box should be green!

FURTHER DEVELOPMENTS

- > New version of the **pedestal DA** code to comply with the new firmware
- > A first version of the static bad channel map is being prepared based on the analysis of real data (test & cosmic runs)
 - □ The same DA will also take care of producing a new bad channel list
 - □ The output will be compared with the static list and the final list will be sent to OCDB
 - □ Work in progress not ready for the next run
- > Gain calibration studies are in progress:
 - ☐ If we conclude that we'll need different gain factors for different parts of the detector then we'll have to develop a new DA code (among other things)
- > We plan to include the output of our DA code to AMORE

BACKUP

SSD CALIBRATION RUN

