TRD DA and Shuttle pre-processor

- Status of the DAs on DAQ
- Status of the Shuttle TRD pre-processor
- Run types
- Detector calibration algorithms from ESDs/ESDfriends for second pass reconstruction.

- Two TRD DAs on DAQ
 - Pedestal algorithm
 - Drift velocity algorithm
- Has been done and is still to be done

AliRoot Head 04/04/2008

Pedestal algorithm

• Run Type: PEDESTAL run

• DA Type: LDCs

• Number of events needed: 100

- Input Files: no config files, no previous result files,
 RAW DATA files from DDL Id= 1024 to 1041 included
- Output Files: trdCalibration.root
 no persitent file over runs
- Test File: run 12170 from 14/12/2007

AliRoot Head 04/04/2008

Drift velocity algorithm

- Run Type: PHYSICS or STANDALONE run
- DA Type: monitoring server
- Number of events needed: continuously running
- ullet Input Files: no config files, no previous result files, RAW DATA file with all the TRD ([DDL = 1024 to 1041])
- Output Files: trdCalibrationv.root
 no persitent file over runs
- Test Files: run 25909 from 08/03/2008 and one file from cosmics taken in Muenster

Has be done for both algorithms:

- previous versions installed at point 2 in December but no time to put them in production
- meanwhile important updates have been done on the reader

Has still to be done for both algorithms:

- to be installed at point 2
- to be tested manually on real data together with Sylvain (first iteration in process...)
- to be put in production

• Summary of what the TRD preprocessor is supposed to do

Status

DCS

- DCS data points (PHYSICS/STANDALONE run)
 - * Put into the DCS Archive DB
 - * Take at the Shuttle for PHYSICS/STANDALONE run
 - * build TGraphs and put them into the OCDB
- DCS FXS
 - * Put a File with the TRD configuration on the DCS FXS
 - * Take it at the Shuttle
 - * Store the info in some format into the OCDB

- DAQ FXS (PEDESTAL and PHYSICS/STANDALONE run)
 - Take the Output of the DAQ DAs on the FXS
 - Analyse and populate the OCDB and reference data
- HLT FXS (PHYSICS/STANDALONE run)
 - Take one file on the HLT FXS
 - Analyse and populate the OCDB and reference data

• DCS

- DCS data points
 - * Up to now it was failing because of non-existing datapoints
 - * Added dummy-Datapoints
 - * Has still to be tested
- DCS FXS
 - * We have still to define the format of the file put on the DCS FXS
- DAQ FXS
 - is working in testmode
- HLT FXS
 - is working in testmode

		Prep	rocess	or	DAQ		DCS				HLT	
		implementation			FXS		Archive DB		FXS		FXS	
	in cvs	test	reco test	failover <u>test</u>	DA in production	output files		DP implem.	DA implem.	output files	DA implem.	output files
ITS spd (SPD)	Yes	Passed	Passed	2 errors	Ok	<u>Ok</u>	Not needed	Not needed	Not needed	Not needed	Not needed	Not needed
ITS sdd (SDD)	Yes	Passed	Passed	Passed	Ok	<u>Ok</u>	<u>Ok</u>	Ok	Not needed	Not needed	Not needed	Not needed
ITS ssd (SSD)	<u>Yes</u>	Passed	-	Passed	Ok	<u>Ok</u>	Missing	Missing	Not needed	Not needed	Not needed	Not needed
TOF	<u>Yes</u>	Passed	Passed	Passed	Ok	<u>Ok</u>	<u>Ok</u>	Ok	Ok	Ok	Not needed	Not needed
TPC	<u>Yes</u>	FAILED	-	Ok	Ok	<u>Ok</u>	<u>Ok</u>	Ok	Unknown	Unknown	Ok	Missing
TRD	<u>Yes</u>	Passed	Passed	Passed	Missing in DAQ	<u>Ok</u>	<u>Ok</u>	Ok	Missing	Missing	Ok	<u>Ok</u>
то (тоо)	<u>Yes</u>	Passes	tbd	tbd	Ok	<u>Ok</u>	<u>Ok</u>	Ok	Not needed	Not needed	Not needed	Not needed
VZERO (V00)	Yes	Passed	-	1 error	In progress	<u>Ok</u>	<u>Ok</u>	Ok	Not needed	Not needed	Not needed	Not needed
ZDC	<u>Yes</u>	Passed	Passed	1 error	Missing in DAQ	<u>Ok</u>	<u>Ok</u>	Ok	Not needed	Not needed	Not needed	Not needed

Run types

We have the run types in the constructor of the TRD preprocessor

• PEDESTAL

STANDALONE

• PHYSICS

Detector calibration algorithms from ESDs/ESDfriends

For calibration with tracks (Standalone (HLT) or global tracking (Offline)) we need:

- the $\frac{dE}{dx}$ of the track
 - for gain calibration
- clusters attached to the track
 - dependence as function of time for drift velocity and t0 calibration
 - profile of the clusters for Pad Response Function
- angles of the track $(\frac{dy}{dx}, \frac{dz}{dx})$
 - drift velocity calibration See method with $\frac{dy}{dt}$ as function of $tan(\phi)$
 - Pad Response Function
 The y resolution depends on $tan(\phi)$

Detector calibration algorithms from ESDs/ESDfriends

Where can we find these informations at the moment?

- AliESD
 - AliESDfriendTrack
 - * TObjArray fCalibContainer
 - · AliTRDtrackV1

We have to define a COMMON strategy for V0 and p biased TRACK selection.

(Simulated pp collisions at 14 TeV)

Use the TRD tracklet

• determine:

- from a linear fit of the tracklet $\frac{dy^{cl}}{dt^{cl}}$
- from the global tracking the angles of the tracklet $\tan(\phi^t)$ and $(\frac{dz}{dx})^t$
- from the database used during the reconstruction $\tan(\alpha_{l_{idl}})\times v_{||idl}$

deduce

- the drift velocity: $v_{||}$
- the Lorentz angle: $tan(\alpha_l)$