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Two data taking periods with bad and goodTwo data taking periods with bad and good
hardware setups 
(large differences in machine misalignment and 
measurements reproducibility levels)



Field  Bm seen by the 3D probe in its local frame ( ≡ lab.frame for FIP probes in position 0):

Model to fit the field distortions

(1)

- vector of probe’s displacements wrt its ideal position
- vector of residual miscalibration

true field in 
lab frameB

r
ˆ

(1)

- rotation matrix bringing vector from lab to local frame

- gradients of field components in lab. frame
(calculated numerically from the difference of

lab frame

(calculated numerically from the difference of 
neighboring measurements for the dominant 
components and exploring                      and 

for minor ones
0=×∇ B

rr

0=⋅∇ B
rr

- rotation matrix accounting the probe’s 
inclinations                           wrt its ideal position 
on the plate

Each component is measured by separate Hall probe and 3D assembly is not point-like (~4x4x4 mm3)
⇓

Difference between the local measurement and the true field: 

(2)



(worked for L3 and to some extent for dipole “good setup” data) 

i Assume that the “main” component (B ) is almost not affected by distortions

Initial method: reconstruction of scalar potential

i. Assume that the main  component (Bx) is almost not affected by distortions

ii. Fit it to solution of Laplace equation and by integration (in x) obtain potential  Ψ

(3)

iii. Compute minor field components as             and fit their difference with measured values to 
assumed distortions model (2) + extra field subject of 2D Laplace equation (an “integration constant”

Ψ∇
r

(3)

assumed distortions model (2) + extra field subject of 2D Laplace equation (an integration constant  
from step ii)
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iv. Correct all components to account for the extracted distortion parameters

v. If needed, repeat same procedure few times.

Problems
In Cartesian frame this method is very slow to converge (due to the lack of the periodicity condition,  
contrary to cylindrical frame of L3) and the measured grid density is not enough for needed precision.

Point (i) is not fulfilled in most of the volume: 
B and B can be as large as BBz and By can be as large as Bx,
Due to the field gradients of up to 300 Gauss/cm in coils and yoke region and significant shifts   
even the dominant component can be wrong by ~100 Gauss.



One can describe data by cubic splines and require their derivatives to respect the Maxwell equations. 
All field components are treated (varied) on the same footing.

New method: fit to splines

Since the number of parameters to fit may reach a few 1000s, the model has to be linear.

Derivative of the spline passing trough the points fi can be presented as a linear form of the measurements

Spline describing the segment                 for measurements fi on equidistant grid 

with 

The second derivatives f ’’ can be obtained from condition of their being continuous at the knots 
and an extra convention for the behavior at the endpoints, leading to tri-diagonal set of linear 

tiequations: 
checks show that “not-a-knot” condition 
(continuous f ’’’ at last but one endpoints) 
is best to fit the data

⇒ the 2nd derivatives f ” can be obtained as a linear combination of the measurement
where matrix M depends only on the number of measured points

⇒ one can directly build the derivatives of the “splined field”:
where                       = -1  and                        = 2 for all 
points  except 1st one where they are swapped and       =1 for i=j, 0 otherwise.ji ,δ

0=Bdiv
r

Hence one can impose the Maxwell equations on 
the model (1) as a set of linear equations.

Example of ⇒0=BdivExample of                             ⇒



Global Fit

Corrections parameters are obtained from the global fit over large volume of data. For each {x,y,z} point 
with n measurements one obtains a set of linear equation (very schematically) :
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with n measurements one obtains a set of linear equation (very schematically) :

Constraints from Maxwell equations
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Constraints to apply a “minimal possible” 
correction (model (1) is linearized, e.g. θθ →sin
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rotations of the setup

Constraints imposing the compatibility of n
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0),(),( θδθδ Constraints imposing the compatibility of  n
repetitive measurements at the same point

Coefficients Cx are relative weights for different constraints: equivalents of Lagrange multipliers but 
have to be tuned by hand (otherwise the model would be non-linear)have to be tuned by hand (otherwise the model would be non linear).

Once the correction parameters are found, the corrected field components (averaged over multiple 
measurements at each points) are fitted to (3) and parameterized by Chebyshev polynomials. 



Some details

~350 scans for each current setting (12 and 30 kA in L3) were used for the fit. g ( )

For 12kA in L3 only data at |Y|<116 cm could be used: large |Y| scans (all taken with “bad” setup)  
have either no overlap or were taken with shift of 4 cm (instead of 8cm) wrt. the rest of the data.

10 probe alignment sets were identified in 3 hardware setups (probe maps)
corrected difference between Face and Back to IP probes data

Some 1D probes showed non-orthogonality 
up to 1mrad (supposed to be <0 2mrad)

corrected difference between Face and Back to IP probes data

up to 1mrad (supposed to be <0.2mrad). 
Only partial correction is possible by 
comparing probes on the opposite sides 
of the machine 
(special step before performing a global fit).

i fno correction for 
non-orthogonality

with correction

At different periods 8, 16 or 6.4 cm steps in Z were used. They all were interpolated to 6.4 cm steps  
to have a data on the equidistant grid.

Gauss



Extracted scan-wise corrections



Difference between the individual 
measurements at each point 

Results

and their average

(L3 = 30kA data)

Data from “fine setups” (9-23/10/2005)

Before correction

Data from “fine+bad setups”



Difference between the individual 
measurements at each point 

Results

Data from “fine setups” (9-23/10/2005)

and their average

(L3 = 30kA data)

Before correction

After correction

Data from “fine+bad setups”



Difference between the average of the 
measurements each point 

Results

and final parameterization

(L3 = 30kA data)

Data from “fine setups” (9-23/10/2005)

Before correction

Data from “fine+bad setups”



Difference between the average of the 
measurements each point 

Results

Data from “fine setups” (9-23/10/2005)

and final parameterization

(L3 = 30kA data)

Before correction

After correction

Data from “fine+bad setups”



Deviation from  ∇⋅B=0 and  ∇×B=0 for corrected data parameterization



corr.data

param.

data - param.

Measurements very close to 
coils/yoke region are difficult to 
improve to better than 20-30 
Gauss precision: 

Z
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the gradients are too strong and 
a few 100 mm misalignment in 
machine/probe position leads to 
large errors.



30 kA in L312 kA in L3

Measured data covers only part of the acceptance:  ~ -1380 < Z < ~ -550 (need up to Z ~ -1750 cm) 
and even in this range does not fill the 9.5o acceptance cone 
⇒ need to extrapolate measured field using Tosca calculation



30 kA in L312 kA in L3

Measured data covers only part of the acceptance:  ~ -1380 < Z < ~ -550 (need up to Z ~ -1750 cm) 
and even in this range does not fill the 9.5o acceptance cone 
⇒ need to extrapolate measured field using Tosca calculation



Merging measured and Tosca fields

Data at Z=-900 cm

Data-Tosca 
at Z=-900 cm

Gauss

at Z 900 cm



Discrepancy between the Tosca and the data 
seems to be similar in case of LHCb dipole 

Tests and Field Map of LHCb Dipole Magnet 
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1051-8223

M Losasso F Bersgma W Flegel P A Gi dici J A HernandoM. Losasso, F. Bersgma, W. Flegel, P. A. Giudici, J. A. Hernando, 
O. Jamet, R. Lindner, J. Renaud, and F. Teubert

Data Tosca for LHCb magnetData – Tosca for LHCb magnet

Parameterization of the LHCb magnetic field map // A.Hicheur, G.Conti, CHEP07



Most simple approach: 

add to Tosca field outside of the measured 
l th diff b t th D t dvolume the difference between the Data and 

Tosca at the closest point on the measured 
surface:

(will work ideally if the Tosca and data gradients

)()()( S
DTT rBrBrB rrr Δ+=

(will work ideally if the Tosca and data gradients 
are the same).

⇒ Leads to strong jumps in the extrapolated field:
the measured surface is not smooth, so the 
“closest point on surface” is not continuousclosest point on surface  is not continuous.



Most simple approach: 

add to Tosca field outside of the measured 
l th diff b t th D t dvolume the difference between the Data and 

Tosca at the closest point on the measured 
surface:

(will work ideally if the Tosca and data gradients

)()()( S
DTT rBrBrB rrr Δ+=

(will work ideally if the Tosca and data gradients 
are the same).

⇒ Leads to strong jumps in the extrapolated field:
the measured surface is not smooth, so the 
“closest point on surface” is not continuousclosest point on surface  is not continuous.

Next step:
account for the difference in gradients on the 
surface:

)(DT rB rr
Δ∂

Leads to smoother extrapolation but if the 
gradients are significantly different the field on the
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gradients are significantly different the field on the
large distance from the measured surface 
diverges.  



Currently used approach:

1. connect the point where the extrapolation is need with 7 fixed points in the 
measured volume by the straight linesmeasured volume by the straight lines

2. find their intersection with the measured surface

3. for each of them compute the extrapolated field as
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4. average over all 7 extrapolated values

In this approach the field at large distances asymptotically tends to Tosca values
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(a=80cm, b=40cm)

In this approach the field at large distances asymptotically tends to Tosca values

Still leads to unphysical kinks.

Currently working on the extrapolation 
accounting for the difference in second 
derivatives:
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BX

Data
T

BZ

Tosca
Merged

Bad extrapolation by Tosca also affects the final parameterization of the field in the measured volume 
close to the surface (when fitted with Chebyshev polynomials up to the reasonably low order)

Merged parameterization –
data 

inside the measured volume



Currently existing parameterization: full 
coverage of the acceptance (at least 9.5o)

Build of 150 separate boxes to fit theBuild of ~150 separate boxes to fit the 
topology of the magnet with minimal 
overlap between each other (most of 
them for the coils region).

The merged field (with all drawbacks ofThe merged field (with all drawbacks of 
the existing extrapolation scheme) is 
parameterized by Chebyshev series 
requiring max. 3 Gauss difference 
between the input value and final 
parameterization. 

The connection with L3 field is done using the measured 
data only: 
the X,Y=±100cm surface of the gap -550<Z<-340 cm is 
filled by splines from L3 and Dipole measured data thenfilled by splines from L3 and Dipole measured data then 
fitted to solution of Laplace equations (3). 



10 30 G j t th d i t f Muon wall10-30 Gauss jump at the end-points of 
L3 / Dipole link. Problem is understood (too 
long in Z envelope was taken to calculate the 
input field for the parameterization).
The jumps will be corrected in next version,j p ,
but this should be characteristic precision of 
the  extrapolation to link region…



What exists in Aliroot:
Standalone classes (don’t require Aliroot):

li h b li h b l classes for internal Cheb she parameteri ationsAliCheb3D, AliCheb3DCalc : classes for internal Chebyshev parameterizations
AliMagFCheb : container for the set of L3 and Dipole parameterizations 

(TObjArray with fast search of need parameterization piece) 

Methods:
to get the field in given point:to get the field in given point:
virtual void Field(Float_t *xyz, Float_t *b)          const;
virtual void FieldCyl(Float_t *rphiz, Float_t *brphiz)const; // for L3 only

to get the parameterized field integral from the point in TPC to closest cathode plane
virtual void GetTPCInt(Float_t *xyz, Float_t *b)           const;_ _
virtual void GetTPCIntCyl(Float_t *rphiz, Float_t *brphiz) const;

Derived from AliMagF:

AliMagWrapCheb : wrapper class for the AliMagFCheb

Methods:
AliMagWrapCheb(const char *name, const char *title, Int_t integ,

Float_t factor=1, Float_t fmax=15, Int_t map = k2kG,
Bool_t dipoleON = kTRUE,
const char* path="$(ALICE_ROOT)/data/maps/mfchebKGI.root");

irt al oid Field(Float t * Float t *b) constvirtual void Field(Float_t *xyz, Float_t *b)               const;
virtual void GetTPCInt(Float_t *xyz, Float_t *b) const;
virtual void GetTPCIntCyl(Float_t *rphiz, Float_t *brphiz) const;
AliMagFCheb* GetMeasuredMap();

When compiled with #define BRING TO BOUNDARY in the AliCheb3DCalc.h for the points outside p # _ _ _ _ p
the parameterized regions the field in the closest valid point will be returned. 
Otherwise the field is set to 0.



What exists on Aliroot:
mfchebKGI.root : file with current parameterizations
Sol30 Dip6 HoleSo 30_ p6_ o e
Sol12_Dip6_Hole
Sol30_Dip0_Hole        (dipole off, valid for  Z>-550)
Sol12_Dip0_Hole        (dipole off, valid for  Z>-550)

Same but w/o accounting for the hole in L3 door:g
Sol30_Dip6_NoHole
Sol12_Dip6_NoHole
Sol30_Dip0_NoHole
Sol12_Dip0_NoHole

The typical field query time: 3-6 μs depending on the dipole region.
Size of single parameterization set: 1.9 MB on disk, 2.8 MB in memory.  

N t t 3 G t l thNote: current 3 Gauss tolerance on the
“input”-”final parameterization”

leads to ~3 Gauss discontinuities in the latter. 
Should not affect the tracking since fluctuations go 
in both directions. 
If needed they can be eliminated on the expense 
of CPUtime/memory



backup



Scan to scan variations

Check for reproducibility of the measurements by the same probes: the only fully overlapping scans with the 
same setup are done with opposite field polarities (possible hysteresis effect): compare after field inversion.p pp p (p y ) p

Worst case seen for “improved setup”, usually the differences are within ~10 Gauss.

Scan 968 
vsvs

Scan 1011

Y=96 cm



Scan to scan variations

Discrepancies are much worse for the 1st data taking period

#458 
vs 

#618

Y = -160 cm



dBi/dz



Example of obtained rotations and miscalibrations probe-map valid for the majority of scans: 19 Aug–10 Sep
(0 means that one of the FIP/BIP probes is missing)

Correcting distortions

~17 mrad relative tilt between FIP and BIP plates
x

y

x

z
NOTE: these fits show only the relative alignment between the pairs of FIP and BIP probes



Example of obtained rotations and miscalibrations  (last probe-map: 9-23 Oct. : probes were readjusted) 

Correcting distortions

⇓

Tilt between plates has been removed



Example of obtained offsets for each 1D probe (last probe-map: 9-23 Oct) 

Correcting distortions
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