Quality Monitoring in TRD

Sylwester Radomski

Physikalisches Institut der Universität Heidelberg Philosophenweg 12, 69120 Heidelberg

> 08.04.2008 ALICE Offline Week, CERN

Overview

- multi level QA
 - ▶ raw data formal structure, noise maps
 - clusters charge and spatial distribution
 - ► ESDs TPC–TRD correlation, energy deposit, PID
 - calibration parameters stability
 - ► quasi-physics ↑ family position and resolution
- technologies involved
 - data monitoring framework
 - analysis framework
 - Root GUI

Development Steps

- definition of histogram
 - granularity detector structure and number of bins
- filling the histograms
 - events / clusters / track selection
- processing histograms
 - implemented in EndOfCycle
 - fitting, mean value calculation
 - contains understanding of detector performance
- comparing to the reference
 - ▶ I would like to compare with a flat line

GUI

- gui displays histograms created by AliTRDQADataMakerRec
- no logic or processing inside
 - only browsing functions (next super-module, next chamber)
 - exception: projection of 2D histograms into 1D
- located in TRD/qaGUI
 - build using ROOT GUI framework with Signal/Slots
 - classes are generic can be reused / adapted

Raw Data, black events from cosmic run

Black Events, chamber by chamber

Clusters – detector overview

Clusters – sector by sector

Clusters – a closer look

ESDs

Quasi physics analysis

- quasi physics analysis ensures long term stability
 - place to understand detector performace
 - benchmark the calibration / alignment
- implemented as AnalysisTask
 - need rather large statistics
 - currently strict track quality cuts
 - location TRD/qaAnalysis
- currently in development
 - transverse momentum spectrum stack-by-stack
 - electron/pion separation
 - track pointing resolution
 - J/ψ analysis

Transverse momentum stability

- list of histograms
 - number of track stack-by-stack
 - number of electron tracks (weighting and threshold)
 - transverse momentum spectrum stack-by-stack
 - electron p_T spectrum stack-by-stack
 - "typical p_T " distribution in time and space
- check the symmetries $(\eta \text{ and } \phi)$
- cuts are essential
 - detector is not necessary symmetric for background tracks

Electron identification stability

- segmentation limitations
 - statistics
 - dE/dx resolution (rather stack than chamber level)
- histograms
 - dE/dx vs p for electrons (weighted or threshold)
 - ▶ playing with 4 dE/dx we have (total, amplifiacation, plateau, TR)
- benchmarking response for a pure sample
 - electrons conversions
 - ▶ pions K_S^0
 - ▶ protons Λ
 - ▶ kaons TPC + TOF

Energy Deposit

Analysis

- resolution studies with ESDFriends
 - analyzes residuals vs angle
 - chamber-by-chamber
 - there are some problems reading friends.
- \blacktriangleright J/ψ analysis
 - electron selection stability
 - azimuthal stability
 - currently code quality not data quality issue

J/Ψ

Plans

- ▶ deployment
- deployment
- deployment
- documentation and user training
- ▶ online monitoring under investigation
- quasi-online analysis and black events lxplus
- ▶ offline analysis CAF