V0 DA Report

1. VO Calibration DA and SHUTTLE Preprocessor

2. Run Types

1. Calibration DA

The calibration DA has been defined and committed to Aliroot

/*

- Contact: Brigitte Cheynis b.cheynis@ipnl.in2p3.fr
- Link: /afs/cern.ch/user/c/cheynis/public/run546.dat
- Run Type: PHYSICS
- DA Type: LDC
- Number of events needed: >=100
- Input Files: argument list
- Output Files: local files V00Log.txt, VZERO_Histos.root, V0_Ped_Width_Gain.dat FXS file V0_Ped_Width_Gain.dat
- Trigger types used: PHYSICS_EVENT
*/

The calibration DA VZEROda.cxx

- reads data of PHYSICS runs from DAQ LDC
- selects calibration-dedicated information within that PHYSICS run
- creates ADC histograms for each channel and both sets of integrators (i.e. 64×2 channels)
- provides pedestal, gain, and sigma values to the FXS in the form of a txt file named V0_Ped_Width_gain.dat

... and SHUTTLE Preprocessor

The SHUTTLE Preprocessor retrieves

- High Voltages mean values from DCS
- ADC pedestal, gain, and sigma values from DAQ through the FXS
and stores them into CDB

DA and SHUTTLE Preprocessor have been installed and tested on
raw files during the cosmics run of february'08, but not configured for production yet.

2. Special runs (to be implemented)

After measuring pedestals and adjusting thresholds using cosmics events, we foresee two special runs for TUNING the FEE parameters before data taking :

Run 1 - for setting charge integration gates (common to each disk) and intercalibration of the 64 channels in situ

Run 2 - for setting individual discriminator signals within time windows (common to each ring i.e. each CIU)

Special runs will need to be done whenever the magnetic field will be changed.

PM HV adjustment for equal gains in lab (17)
 Sequence of operations before data taking

$>$ Trigger ACORDE
$>$ Set-up from pedestal values
$>$ Integration gates: trigger BB (25 ns windows)

- $\left(\sum_{n} Q_{n}\right) / n=f\left(T_{\text {gate }}\right)$ (n number of triggers) as a function of the time position of gates (25 ns width) for events with $\Delta \mathrm{t}_{\mathrm{A}-\mathrm{C}}=0 \mathrm{~ns}$
- final T values given for $\left(\sum_{n} Q_{n}\right) / n=\operatorname{Max}$
-3-4 HV values between 2200 and 1600 V for the calibration of channels in situ
$>$ Time windows: trigger CTA1 (low threshold)
- $\left(\sum_{\mathrm{n}} \mathrm{f}_{\mathrm{BB}}=1\right) / \mathrm{n}=\mathrm{f}$ (delay) (n number of triggers) as a function of the delay value of discriminator signals for events with $\Delta \mathrm{t}_{\mathrm{A}-\mathrm{C}}=0 \mathrm{~ns}$
- 64 final delay values for $\left(\sum_{n} f_{B B}=1\right) / n=\operatorname{Max}$
> Set-up according to BB windows
- trigger BG

DAQ DA - status overview (mar 08)
 x : no recent activity

	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{O} \\ & \mathrm{R} \\ & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	C P V	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{C} \\ \mathrm{a} \\ \mathrm{I} \end{gathered}$	F M D	$\begin{gathered} \mathrm{H} \\ \mathrm{M} \\ \mathrm{P} \\ \mathrm{I} \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{U} \\ & \mathrm{O} \\ & \mathrm{~N} \\ & \overline{\mathrm{~T}} \\ & \mathrm{R} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{U} \\ & \mathrm{O} \\ & \mathrm{~N} \\ & \overline{\mathrm{~T}} \\ & \mathrm{R} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{H} \\ & \mathrm{O} \\ & \mathrm{~S} \end{aligned}$	P M D	S D D	S P D	S S D	$\begin{aligned} & \mathrm{T} \\ & \mathrm{o} \end{aligned}$	T O F	T P C	T R D	V	Z D C
Code existing (number of DAs)	0	0	0	2	1	1	1	1	1	3	2	1	2	3	3	2	1	2
DAs in Aliroot																		
Validation requested																		
Test file available																		
RPM documentation avallable																		
Corresponding ECS run types defined																		
Packaging and interface validated																		
DA installed at Point 2				X												X		X
DA tested manually ok on real data																		
DA in production							1			3	2	1	2	3	2			

Backup slides

	Name	Function	Number
1	Chantel_delay	Individaal delay used for the timing alignment of the hit with the observatice windevs (programmable by step of 20 pas)	64
2	Source_slock:	Panameder allowing to choose the reference clock from several possibilities (a quatz cen DCS or cen CCIU board, clock 40 . clock 40 Des 1 ar elock- 0 DDes 2 from the TTCK).	1
3	CL.K.Cr_delay	Delay of the CLK observition windews (TTCex parameter progmamable by step of 104/s6).	1
4	CL.Kwor_delay	Delay of the CLKyrc clock used as timing reference for the charge indegration on VOC side (programmable by step of 20 ps).	1
5	CL.Kvor_dilay	Delay of the CL.Kym clock used as timing reference foe the charge imtegntion oe VOA side (programmable by step of 20 ps).	1
6	CL.K ${ }_{\text {daya }}$ delay	Delay of the clock med foe the symehronization of the trigger signals (progrnmmable by step of 20ps).	1
7	BB mindow profile	Main pectile of the BB window (built with 5 sepments of 5 ns)	1
8	Start_VOBB	Delay applied on the main profile window (BB) to define the start time of the BB window (one parnmeter per ring / CIU board.	8
9	Stop_VOBB	Delay applied on the main profile window (BB) to define the stop time of the BB window (cete parnmeter per ring / CIU board.	8
10	BGiA milithw profile	Marin peotile of the BGiA window (built with 5 segments of Sns)	1
11	Start VOABG	Delay applied on the main profile window (BGAA) to define the start time of dhe BGA mindow (one pornmeter per ring foe the CIU boand on the VOA side).	4
12	Stop_V0ABG	Delay applied on the main profile window (BGAA) to define the stop time of the BGA window (one parameter per ring foe the CIU boand on the V0A side).	4
13	BGGC window ex	Main peotile of the BGEC mindow (buily with 5 segments of 5ns)	1
14	Start VoCBG	Delay applied on the main profile window (BGC) कo define the stat time of the BGC window (one pormemeter per ring foe the CIU boord on the V0C side).	4
15	Stop_VOCBG	Delay applied on the main profile window (BGC) to define the stop time of the BGC window (one parmater per ring foe the CIU boond on the V0C side).	4
16	Discri threshold	Threshold of the discriminator (1 threshold per chamed)	64
17	High voltare	High voitage agelied to the photomultipliers (1 manameter per chanimel)	64
18	Reset_mask	Definiticen of the integritor reset (this 10 bits parameter repersents cete reset cyele period (50ns) eut in 10 segments of 5 ns)	1
19	Charge_int_Cik_mak	Definition of the charge infegration clock (this 10 bits parnanter represents one clock eyche period (5 (ats) cut in 10 segments of 5 ns)	1
20	Simma podestal	These parameters defines the sigma of the podestal gaussian distribution cen ench chanel	64
21	Average pedestal	These parameters defimes the pedestal werage valus on eachi chameel.	64
22	Nb_sigma_for_0	This pornancter defines the number of sigma below the avernge podestal value where the integration charge is ocessidered as 0	1
23	Enable sigma sup	This parmenter enable/disable the pedestal superessione on the catout data (oollectod through the DDL.)	1
24	Multi_Threshold	This parnatetens detines the multipleity trigger threshold. There is 2 thresholks for VOA (correspoeding respestively to the multiplicity triggers 1 \& 2) and 2 for V0C (comespoeding respestively to the multiolicity trissens 1 \& 27 .	4
25	BG_ threshold	This parametess defines the beam-gas threshold for VOA and VOC. There is 2 thresholds for V0A (corresponding to a beam-gas coming from RB24 and RB26 side) andid for V0C (comespoeding to a beam-gas comine from RB24 and RB26 side).	4
26	MB_thershold	This parameters detines the minimum bias trigger flirestoid There is one threshold toe and cete for Voc.	2
27	PP_multi_threshokd	This parametess defines the procer-proton multiplicity triggor threshold. There is 2 thresholds for V0A (corresponding to the upper and lower threshold of the zone where the peoton-peoton multiplicity trigger is gencrated) and 2 for VOC (oorresponding to the apper and lower threshold of the zoete where the proton-profon multiplicity trigger is genenated.	4
28	Trigater sclest	This purnatcter allows to choose 5 triggers among 6	1
29	Enable chantel	This parameter enable disolble the taking into acoome of each chamel for the trigger generatione.	1
30	HPIDC conf	Defrimition of the general conflauricice of the HPTIXC.	1
31	H size measusment	Defines the histogram data size sent with the interaction data to the DAO.	1
32	H_size_calibration	Defines the hisiogram calibration dota size sent with the interaction data to the DAQ (these data coresponds to a minimum bisa (1 multiolicity) and pedestal value of each chanath)	1
33	mode	- operaticenal (mormal mode) special trigger generation for the CTP synchronization (available foe the 5 triggers cutput) test of the QDC - test of the TDC	1
34	Astive QDC chamel	a parameter to enableddable each chanall to participate to the triggor genemtion using the QDC information	64
35	Astwe TIXC chantel	a parameter to cunabledisoble each chamed to partisipais to the trigger generation axing the timing information (through the observation window) and to erable (disable the timing measurement.	64
35	spares		20

HV setting (VOC)

$>$ Measure of cosmic MIP crossing a cell of ring 3 at $12 \mathrm{pC}(60 \mathrm{mV})$ at the input of FEE

- final configuration (optical fibres, signal cables)
- reference PMT at $1700 \mathrm{~V} /$ gain 2.510^{6}
$>$ All other PMTs at the same gain through HT value
$>$ Then adjustment to take into account attenuations due to:
- magnetic field (a few tens \%)
- counter geometry / shifting fibre (up to 10\%)
> Uncertainties not corrected:
- optical fiber transmission effect ($\pm 5 \%$)
- preamplifier gain effects (a few \%)

HV setting (VOC)

$>$ Measure of cosmic MIP crossing a cell of ring 3 at $12 \mathrm{pC}(60 \mathrm{mV})$ at the input of FEE

- final configuration (optical fibres, signal cables)
- reference PMT at $1700 \mathrm{~V} /$ gain 2.510^{6}
$>$ All other PMTs at the same gain through HT value
$>$ Then adjustment to take into account attenuations due to:
- magnetic field (a few tens \%)
- counter geometry / shifting fibre (up to 10\%)
> Uncertainties not corrected:
- optical fiber transmission effect ($\pm 5 \%$)
- preamplifier gain effects (a few \%)

transit time from IP to FEE

cable length from patch panel to FEE

VOA/ VOC time setting

Effect due to cable characteristics

- 39 meters to VOA ($4.3 \mathrm{~ns} / \mathrm{m}$)
- 36 meters to VOC ($4.6 \mathrm{~ns} / \mathrm{m}$)
$>$ Effect due to different transit times
- through shifting fibres (ring dependent)
- preamplifier (channel dependent)
- position of CIU within the VME crate
- (with equal transit time through PMTs)
$>$ Compensation with the length of cables at the input of FEE

