Anomalous Quartic Couplings Studies at ATLAS D. Nguyen, Argonne National Laboratory On behalf of the ATLAS collaboration

LHCP 2014, New York

Introduction

- In the Standard Model, the quartic gauge boson couplings originate from non-Abelian nature of the theory.
 - Allowed couplings: WWWW, WWZZ, WWZγ, WWγγ
- Measuring the effect of quartic couplings is challenging
 - The cross section is at the order of femto barn.
 - The quartic coupling diagrams can not be separated from other diagrams due to gauge invariance requirement.
- Vector boson scattering and triboson processes are sensitive to quartic couplings effects
 - Low energy effect from new physic phenomena can result in anomalous quartic couplings (aQGC) \rightarrow new physics evidences if deviations from SM are observed.

• Effective field theory to describe the aQGC effect:

 $\mathcal{L}_{\mathcal{EFT}} = \mathcal{L}_{SM} + \sum_{d > 4} \sum_{i} \frac{c_i}{\Lambda^{d-4}} \mathcal{O}_i$

- The higher-oder terms break gauge invariance \rightarrow Use form factor or K-matrix scheme to restore unitarity
 - K-matrix unitarization scheme: project the elastic scattering eigenamplitude on the Argand circle

Λ^2)

Vector Boson Scattering in WWjj Final State

- The VBS WWjj process is ideal for QGC at WWWW vertex studies:
 - two jets with large rapidity gap.
 - Use same-sign leptonic WW channel to further reduce SM backgrounds.
- The quartic couplings contribution are measured together with other EWK and strong diagrams resulting in the same final states.
- VBS signal region: $M_{ii} > 500 \text{ GeV and } Ay_{ii} > 24^{-1}$

	ee	еμ	μμ
Total backgrounds	5.0 ± 0.9	8.3 ± 1.6	2.6 ± 0.5
EWK WWjj	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4
Total predicted	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8
Data	6	18	10

- The dimension-4 operator L_4 and L_5 are the lowest dimensional operators contributing to quartic vertex, conserving SU(2) and CP. • Limit setting:
- Effective electroweak chiral Lagrangian:
 - $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \beta_1 \mathcal{L}_0^{\prime(2)} + \sum_i \alpha_i^{(4)} \mathcal{L}_i^{(4)} + \frac{1}{\Lambda} \sum_i \alpha_i^{(5)} \mathcal{L}_i^{(5)}$ $\alpha_4 \mathcal{L}_4 = \alpha_4 \left(\operatorname{tr} \left\{ \mathbf{V}_{\mu} \mathbf{V}_{\nu} \right\} \right)^2 \text{ and } \alpha_5 \mathcal{L}_5 = \alpha_5 \left(\operatorname{tr} \left\{ \mathbf{V}_{\mu} \mathbf{V}^{\mu} \right\} \right)^2$
- WHIZARD to simulate pure EWK processes for different aQGC points.
- Unitarization with K-matrix method
- Profile likelihood method for limit setting

0.025 0.016 0.066 a_4

 ab^{-1}

 3 ab^{-1}

 300 fb^{-1}

 Lepton+jets channel: feasible to reconstruct WW mass. Dominant backgrounds are top pairs and dibosons

model	SM	500 GeV scalar	800 GeV vector	1150 GeV vector
(a_4, a_5)	(0, 0)	(0.01, 0.009)	(0.009, -0.007)	(0.004, -0.004)
S/B	$(3.3 \pm 0.3)\%$	$(0.7 \pm 0.1)\%$	$(4.9 \pm 0.3)\%$	$(5.8 \pm 0.3)\%$
$S / \sqrt{B} (L = 300 \text{fb}^{-1})$	2.3 ± 0.3	0.6 ± 0.1	3.3 ± 0.4	3.9 ± 0.4
$S/\sqrt{B} \ (L = 3000 \text{fb}^{-1})$	7.2 ± 0.1	1.6 ± 0.1	10.4 ± 0.7	12.4 ± 0.7

aQGC Sensitivity Studies at High Luminosity LHC

- Perform sensitivity studies in probing anomalous quartic gauge boson couplings via VBS and triboson channels at 14 TeV high luminosity scenarios (300 and 3000 fb⁻¹).
- The processes of interests are: VBS fully leptonic ZZ, WZ and triboson Zgg
- Simulations:
 - LO MADGRAPH generator, CTEQ6L1 PDF. Particle showers are simulated by PYTHIA
 - Jets are reconstructed using anti-kT R=0.4 algorithm from truth level particles.
- VBS ZZ->||||:
 - Fully-leptonic channel ($p_T > 25$ GeV, two opposite sign, same flavor pairs), two tagged jets (p_T > 50 GeV, m_{ii} > 1 TeV)
- Effective Lagrangian $\mathcal{L}_{\phi W} = \frac{c_{\phi W}}{\Lambda 2} \text{Tr}(W^{\mu \nu} W_{\mu \nu}) \phi^{\dagger} \phi$

model

- VBS WZ->Inull:
- Fully-leptonic channel (pT > 25 GeV), two tagged jets (p_T > 50 GeV with m. SpaulationeV) $- Effective Lagrangian \quad \mathcal{L}_{T,1} = \frac{f_T \hat{b}}{\sqrt{45}} r[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta}] \times \tilde{T}r[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu}]$

