Falsifying Leptogenesis at the LHC

Frank Deppisch
f.deppisch@ucl.ac.uk

University College London
Leptogenesis

- Classic Scenario
 - Heavy Majorana Neutrino Decays
 - Out-of-equilibrium
 - CP and lepton number violation
 - Competition with LNV washout processes
 - Net lepton number asymmetry
 - Conversion to baryon asymmetry
 - EW Sphaleron Processes at $T \approx 100$ GeV
 - Observed Asymmetry
 \[\eta_B \equiv \frac{n_B - n\overline{B}}{n_\gamma} = (6.20 \pm 0.15) \times 10^{-10} \]

- Other possible scenarios
 - For us only important: Lepton number asymmetry generated above LHC scale
LNV @ LHC

- General resonant process with signature
 \[pp \rightarrow l^\pm l^\pm + 2\text{jets} \]
 - Lepton number violating with \(\Delta L = \pm 2 \)

- Model–independence
 - Unspecified heavy states and couplings

- Example
 - Heavy \(W_R \) and \(N \) production

Das, FFD, Kittel, Valle ‘12
Induced Washout

- Compare LHC cross section with lepton number asymmetry washout

\[\frac{\Gamma_W}{H} > 3 \times 10^{-3} \frac{M_P M_X^3}{T^4} \frac{K_1(M_X/T)}{f_{q_1 q_2}(M_X/\sqrt{s})} \times (s \sigma_{LHC}) \]

- Lower limit on total washout rate
 - Neglecting other washout processes

\[\log_{10} \frac{\Gamma_W}{H} > 7 + 0.6 \left(\frac{M_X}{\text{TeV}} - 1 \right) + \log_{10} \frac{\sigma_{LHC}}{\text{fb}} \]

- Observation of LNV @ LHC corresponds to highly effective washout \(\Gamma_W/H \gg 1 \)
 - Excludes Leptogenesis models that generate asymmetry above \(M_X \)
Induced Washout

- Compare LHC cross section with lepton number asymmetry washout
 - Lower limit on total washout rate
 - Observation of LNV @ LHC corresponds to highly effective washout $\Gamma_W/H \gg 1$
 - Excludes Leptogenesis models that generate asymmetry above M_X
Baryon Asymmetry Limit

- Classic Leptogenesis with one heavy neutrino N, neglecting flavour
 - Solve Boltzmann equations for η_N and η_L with LHC process as only washout source
 - Upper limit on baryon asymmetry

$$\log_{10}\left|\frac{\eta_B}{\eta_B^{\text{obs}}}\right| < 2.4 \frac{M_X}{\text{TeV}} \left(1 - \frac{4M_N}{3M_X}\right) + \log_{10}\left|\epsilon\left(\frac{\sigma_{\text{LHC}}}{\text{fb}}\right)^{-1}\left(\frac{4M_N}{3M_X}\right)^2\right|$$

- LNV is observed at LHC
 - High scale Leptogenesis ($M_N > M_X$) is not viable
 - Strong limit on CP asymmetry ϵ for low scale Leptogenesis ($M_{EW} < M_N < M_X$)
Possible Caveats

- Cannot exclude scenarios that generate a lepton number asymmetry below observed scale M_X
 - But strong limits still apply

- Asymmetry can be present in one lepton generation only
 - Unambiguous falsification requires observation of LNV in all flavours (or observation of low energy LFV such as $\tau \rightarrow e\gamma$)

- Sphalerons only affect l.h. leptons… What if LNV is observed for r.h. leptons only?
 - Not an issue as all l.h. and r.h. charged fermions are in thermal equilibrium $\approx M_{EW}$
Other LNV Processes

- The argument can be easily extended to
 - other resonant and non-resonant LNV processes at the LHC
 - LNV processes at other future colliders
Conclusion

- Observation of LNV @ LHC corresponds to strong washout of lepton number asymmetry in early Universe
- This would rule out a large number of high scale Leptogenesis models
 - Observation of LNV/LFV in all flavours would rule out all high scale scenarios
- Strong motivation to search for LNV @ LHC in as many channels as possible
- Strong Synergy with $0\nu\beta\beta$ searches
 - Probing models of neutrino mass generation
 - Observation of $0\nu\beta\beta$
 - No observation of LNV @ LHC

}\ Improved confidence in high scale Majorana models (Seesaw)
Observation of LNV @ LHC corresponds to strong washout of lepton number asymmetry in early Universe

This would rule out a large number of high scale Leptogenesis models
- Observation of LNV/LFV in all flavours would rule out all high scale scenarios

Strong motivation to search for LNV @ LHC in as many channels as possible

Strong Synergy with $0\nu\beta\beta$ searches
- Probing models of neutrino mass generation
 - Observation of $0\nu\beta\beta$
 - “Compatible” observation of LNV @ LHC
 - LNV @ TeV Scale
 - Disfavours high scale seesaw
Conclusion

- Observation of LNV @ LHC corresponds to strong washout of lepton number asymmetry in early Universe
- This would rule out a large number of high scale Leptogenesis models
 - Observation of LNV/LFV in all flavours would rule out all high scale scenarios
- Strong motivation to search for LNV @ LHC in as many channels as possible
- Strong Synergy with $0\nu\beta\beta$ searches
 - Probing models of neutrino mass generation
 - No observation of $0\nu\beta\beta$
 - No observation of LNV @ LHC