

ATLAS results on top properties

Frédéric Derue, LPNHE Paris (on behalf of the ATLAS collaboration)

The 2nd annual conference on Large Hadron Collider Physics LHCP 2014, Columbia University New York, USA

- Introduction
- mass
- charge
- polarization
- spin correlation
- charge asymmetry
- FCNC

7 TeV analyses $\sim 1 \times 10^6$ pairs 8 TeV analyses $\sim 5 \times 10^6$ pairs

What kind of physics with top quark?

Heaviest fundamental particles \rightarrow large Higgs coupling (special rôle in EWSB?) Very short lifetime (~10⁻²⁵s) \rightarrow decays before hadronization (10⁻²³s)

→ spin information carried to final state particles

Possibility to study bare quark

Great tool to study Standard Model – or search for New Physics

Top quark mass

Motivation

ATLAS-CONF-2013-046

test internal consistency and constrain of the SM and BSM theories

Strategy

- ★ data: 4.7 fb⁻¹ at 7 TeV, semileptonic
- $_{\star}$ m, from kinematic likelihood fit, reconstructed m_w, R_{lb}
- ★ templates for $m_{_{\! +}}$ [167.5,177.5] in 3D : $mt \otimes JSF \otimes bJSF$

$$R_{\rm lb}^{\rm reco,1b} = \frac{p_{\rm T}^{b_{\rm tag}}}{(p_{\rm T}^{W_{\rm jet_1}} + p_{\rm T}^{W_{\rm jet_2}})/2}$$

$$R_{\rm lb}^{\rm reco,2b} = \frac{p_{\rm T}^{b_{\rm had}} + p_{\rm T}^{b_{\rm kp}}}{p_{\rm T}^{W_{\rm jet_1}} + p_{\rm T}^{W_{\rm jet_2}}},$$

Main systematic uncertainties: b-tagging eff, JSF, bJSF

$$\begin{aligned} \text{m}_{\text{top}} &= 172.31 \pm 0.75 \text{ (stat+JSF+bJSF)} \pm 1.35 \text{ (syst) GeV} \\ &\text{JSF} = 1.014 \pm 0.003 \text{ (stat)} \pm 0.021 \text{ (syst)} \\ &\text{bJSF} = 1.006 \pm 0.008 \text{ (stat)} \pm 0.020 \text{ (syst)} \end{aligned}$$

Top quark mass (combination)

First combination of LHC (ATLAS+CMS) and Tevatron (CDF+D0)

ATLAS-CONF-2014-008; CDF-NOTE-11071; CMS-PAS-TOP-13-014; D0-NOTE-6416; arXiv:1403.4427

Mass difference between t and t

Motivation

- first ATLAS measurement of $\Delta m = m(t) m(\bar{t})$
- \Rightarrow by CPT invariance m(t)=m(t) is a condition for local field theory
- Strategy
 - ★ data: 4.7 fb⁻¹ at 7 TeV, semileptonic (2 btag)
 - * kinematic fit allows to measure m(lvb)-m(jjb) for each events
 - ★ 15 samples simulated with $\Delta m=[-15,15]$ GeV, $(m_{t}+m_{t})/2=172.5$ GeV
 - ★ unbinned likelihood fit to extract Δm

Main systematic uncertainties: b/bbar decay uncertainties (0.34)

 $\Delta m = 0.67 \pm 0.61$ (stat) ± 0.41 (syst) GeV consistent with SM

Electric charge

Motivation

- ★ test whether the charge Q is 2/3e (SM) or -4/3e
- \bigstar SM top can decay to I⁺, b^{-1/3}, an exotic t_x to I⁻, b^{-1/3}

Strategy

- ★ data : 2.05 fb⁻¹ at 7 TeV,
- ★ select semileptonic tt events
- b jet charge Q(b) obtained from weighted sum of b tracks
- ★ pairing of lepton and b from m_{III}
- \star measure Q(comb) = Q(b)×Q(l)

Q = 0.64 ± 0.02 (stat) ± 0.08 (syst) e Q = -4/3 e excluded at 8σ

Main systematic uncertainties:
Jet energy scale (8.3%)
Parton shower (7.9%)

JHEP11 (2013) 031

Polarization and spin correlation

Motivation

- top quarks produced in pairs are almost unpolarized in the SM, but the spins of the top and antitop are correlated
- the study of these properties through the decay particles can be affected by BSM models either in top production or decay
- * study the angles of the top decay products

* double differential cross section

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1 d\cos\theta_2} = \frac{1}{4} (1 + \alpha_1 P_1 \cos\theta_1 + \alpha_2 P_2 \cos\theta_2 - C\cos\theta_1 \cos\theta_2)$$

- \star θ is the polar angle of the decay particles
- \star α is the spin analyzing power (~1 for charged leptons)
- \star C is the tt spin correlation : C = -A $\alpha_+\alpha_-$, with $A \equiv \frac{N(\uparrow\uparrow)+N(\downarrow\downarrow)-N(\uparrow\downarrow)-N(\downarrow\uparrow)}{N(\uparrow\uparrow)+N(\downarrow\downarrow)+N(\uparrow\downarrow)+N(\downarrow\uparrow)}$
- $\star P_1(P_2)$ is the degree polarization of top (antitop)

$$P = \frac{A_P}{2} = \frac{1}{2} \frac{N(\cos \theta_I > 0) - N(\cos \theta_I < 0)}{N(\cos \theta_I > 0) + N(\cos \theta_I < 0)}$$

Polarization

Strategy

- * data: 4.66 fb⁻¹ at 7 TeV, selection of semileptonic and dilepton events
- * produce templates with positive/negative polarization from MC tr sample
- \star extract αP from fit $\cos(\theta)$ on data distributions to templates for two scenarii
 - CP conserving : same αP for top and antitop
 - ightharpoonup CP violating : opposite α P for top and antiotop

Phys.Rev.Lett 111, 232002 (2013)

Main systematic uncertainties : Jet reconstruction $(0.031 \text{ on } \alpha_{\text{IP}_{CPC}})$

$$\alpha_{l}P_{CPC} = -0.035 \pm 0.014 \text{ (stat)} \pm 0.037 \text{ (syst)}$$

 $\alpha_{l}P_{CPV} = 0.020 \pm 0.016 \text{ (stat)} ^{+0.013}_{-0.017} \text{(syst)}$

Results are in agreement with expectations from SM

Spin correlation

Strategy ATLAS-CONF-2013-101

- \star data : 4.6 fb⁻¹ at 7 TeV, dilepton
- * 4 observables sensitive to different sources of new physics in tt production
 - $\rightarrow \Delta \phi$ between the two leptons (lab frame)
 - $cos(\theta 1)cos(\theta 2)$ in the helicity and maximal bases $f_{SM} = N_{A=SM}/(N_{A=SM} + N_{A=0})$
 - S ratio $S = \frac{(|\mathcal{M}|_{RR}^2 + |\mathcal{M}|_{LL}^2)_{corr}}{(|\mathcal{M}|_{RR}^2 + |\mathcal{M}|_{LL}^2)_{uncorr}}$

$$A_{\text{basis}}^{\text{measured}} = f_{\text{SM}} A_{\text{basis}}^{\text{SM}}$$

Main systematic uncertainties: signal modeling and Jet energy scale

Basis	$\Delta \phi$	S-ratio	$\cos(\theta_+)\cos(\theta)_{\text{helicity}}$	$\cos(\theta_+)\cos(\theta)_{\text{maximal}}$
A _{helicity}	$0.37 \pm 0.03 \pm 0.05$	$0.27 \pm 0.03 \pm 0.04$	$0.23 \pm 0.06 \pm 0.10$	_
Ameasured maximal	$0.52 \pm 0.04 \pm 0.07$	$0.38 \pm 0.05 \pm 0.06$	_	$0.36 \pm 0.06 \pm 0.09$

Charge asymmetry

Motivation

- * tt pair production has a small asymmetry under charge conjugation in SM
- * BSM could lead to an enhancement in this effect

Strategy

- * data: 4.7 fb-1 at 7 TeV, semileptonic tt events
- \bigstar differential measurements in p_{τ} , mass and rapidity of $t\bar{t}$ pairs

 $A_{\mathrm{C}}^{t\bar{t}} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)},$

 $A_C^{tt} = 0.005 \pm 0.007 \text{ (stat)} \pm 0.006 \text{ (syst)}$

10

Flavour Changing Neutral Current

Motivation

- ★ in SM, FCNC processes forbidden at tree level and suppressed at higher orders
- ★ BSM with new sources of flavour predict order of magnitudes higher rates

Production

- ★ data: 14.2 fb⁻¹ at 8 TeV
- ★ single top (t-channel)

 σ_t (qg \rightarrow t)×BR(t \rightarrow Wb)<2.5 pb @95% CL

$$\kappa_{\rm ugt}/\Lambda < 5.1 \times 10^{-3} \, {\rm TeV^{-1}}$$

 $\kappa_{\rm cgt}/\Lambda < 1.1 \times 10^{-2} \, {\rm TeV^{-1}}$

Decay

- ★ 4.7 fb⁻¹ at 7 TeV / 20.3 fb⁻¹ at 8 TeV
- \bigstar t → qH (H → γγ)
- * search in fully hadronic / semileptonic

JHEP acc. ArXiv 1403.6293

BR($t\rightarrow qH$)<0.79% @95% CL (expected < 0.51%)

Summary

- Precise measurements of top quark properties at LHC
 - * measurements of the top mass, mass difference between t and t, charge, polarization as well as spin correlation, charge asymmetry and search for flavour changing neutrla current have been presented
 - most of the inclusive ones are systematically dominated
- No hints of new physics in top quark properties measurements
- Lots of 8 TeV studies are still in progress

Charge asymmetry
Look at poster of Daniel Marley!

Public results https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Backup slides

The ATLAS detector

Muon spectrometer (|\eta|<2.7): air-cores toroids with gas-based chambers. Trigger and measurement. Momentum resolution <10% up to E μ ~1 TeV

Inner Detector ($|\eta|$ <2.5): Si pixel, SCT, TRT Tracking and vertexing. e/π separation $\sigma(p_{\tau})/p_{\tau}\sim0.038\%~p_{\tau}~(GeV)\oplus1.5\%$

EM calorimeter ($|\eta|$ <3.2) : Pb/LAr accordion Trigger and e/γ reco and id

 $\sigma(E)/E\sim10\%/\sqrt{E}$ (GeV) $\oplus0.7\%$

HAD calorimeter ($|\eta|$ <5):

Fe/scintillator tiles (central), Cu/W LAr (fwd), Trigger, jets and Etmiss. $\sigma(E)/E\sim50\%/\sqrt{E}$ (GeV) $\oplus3\%$

$$\vec{p}_T = (p_x, p_y)$$

Barrel Toroid

$$p_T = p \sin \theta$$
, $E_T = E \sin \theta$

$$\vec{E}_T^{miss} = -\sum_{\text{clusters } i} E_i \hat{n}_i$$

Trigger:

L1: hardware, L2-EF, ~200 Hz in output

Object reconstruction

To study top quark it implies good understanding of many different objects reconstructed in all different ATLAS subdetectors

Muons

combined fitted tracks
tight identification

central : $|\eta|$ <2.5, p_T >25 GeV

isolated

Electrons

matched track and EM cluster tight identification using shower shape variables, ID

central : $|\eta|$ <2.5, p_T >25 GeV

isolated

Jets

anti- k_{τ} -algorithm (R=0.4)

central $|\eta|$ <2.5 p_T>25 GeV

Triggers

based on single lepton high $p_{\scriptscriptstyle T}$ or N jets

E_Tmiss

vector sum of energy in calorimeter cells, ID, spectro projected in transverse plane, associated with high $p_{\scriptscriptstyle T}$ object and dead material loss

$$S_{ETmiss} = E_{Tmiss}/(0.5 \times \sum E_{T})$$

b-tagging

long lifetime of B hadrons: NN based on impact parameter, secondary vertex, fragmentation properties, resonance mass

Top quark production and decays

Production mechanism

- ★ tt̄ pair, 85% by gluon fusion, ~15% by qq̄ production
- ★ single top (electroweak)

Predictions √s= 7 TeV

 $\sigma(pp \rightarrow t\bar{t})_{NNLOapprox} = 167^{+17}_{-18} \ pb$ Computed with: Aliev et. al., HATHOR, arXiv:1007:1327 (2011)

Top pair event classification according to W decays

Branching ratio

4.9%

Final state

2 isolated leptons

large E_T miss

2 b-jets

few

Backgrounds

(mainly Z+jets)

b-jet b-jet

jet jet

lepton + jets

repton i je

29.6%

1 isolated lepton

⊢"

2 b-, 2 light jets

moderate

(mainly W+jets)

jet jet b-jet jet all hadronic

45.7%

no lepton

10 E_T miss

2 b-, 4 light jets huge

(mainly QCD)

 τ channels : 13.5% for τ +jets and 6.3% for τ +e/ μ +jets

tt decay modes

General distinction according to the W[±] pairs decay modes

"All hadronic" 45.7%

high background

"lepton+jets"

$$\tau^{\pm} \nu_{\tau} + \text{jets}$$
 15.21 % $e^{\pm} \tau^{\pm} \nu_{\tau} \nu_{e}$ 2.42 %

$$\mu^{\pm} \tau^{\pm} \nu_{\tau} \nu_{\mu}$$
 2.23 %

$$\tau^+ \tau^- \nu_{\tau} \nu_{\tau}$$
 1.26 %

leptonic or hadronic τ decay modes

$$\begin{array}{lll} e^{+} \; e^{-} \; \nu_{\tau} \nu_{\mu} & \quad 1.15 \; \% \\ \mu^{+} \; \mu^{-} \; \nu_{\tau} \nu_{\mu} & \quad 1.12 \; \% \\ e^{\pm} \; \mu^{\pm} \; \nu_{\tau} \nu_{\mu} & \quad 2.27 \; \% \end{array}$$

Clean in terms of trigger and selection Presence of two v's. Transverse mass. "dilepton"

Top pair decay channels

Plot from Angela Barbaro Galtieri et al. 2012 Rep. Prog. Phys. 75 056201

Top mass combination

On going effort to harmonize systematic uncertainties

	Input measurements and uncertainties in GeV											
	CDF			D0		ATI	ATLAS		CMS		World	
Uncertainty	l+jets	di-l	all jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	l+jets	di-l	l+jets	di-l	l+jets	di-l	all jets	Combination
m_{top}	172.85	170.28	172.47	173.93	174.94	174.00	172.31	173.09	173.49	172.50	173.49	173.34
Stat	0.52	1.95	1.43	1.26	0.83	2.36	0.23	0.64	0.27	0.43	0.69	0.27
iJES	0.49	n.a.	0.95	1.05	0.47	0.55	0.72	n.a.	0.33	n.a.	n.a.	0.24
stdJES	0.53	2.99	0.45	0.44	0.63	0.56	0.70	0.89	0.24	0.78	0.78	0.20
flavourJES	0.09	0.14	0.03	0.10	0.26	0.40	0.36	0.02	0.11	0.58	0.58	0.12
bJES	0.16	0.33	0.15	0.17	0.07	0.20	0.08	0.71	0.61	0.76	0.49	0.25
MC	0.56	0.36	0.49	0.48	0.63	0.50	0.35	0.64	0.15	0.06	0.28	0.38
Rad	0.06	0.22	0.10	0.28	0.26	0.30	0.45	0.37	0.30	0.58	0.33	0.21
CR	0.21	0.51	0.32	0.28	0.28	0.55	0.32	0.29	0.54	0.13	0.15	0.31
PDF	0.08	0.31	0.19	0.16	0.21	0.30	0.17	0.12	0.07	0.09	0.06	0.09
DetMod	< 0.01	< 0.01	< 0.01	< 0.01	0.36	0.50	0.23	0.22	0.24	0.18	0.28	0.10
b-tag	0.03	n.e.	0.10	n.e.	0.10	< 0.01	0.81	0.46	0.12	0.09	0.06	0.11
LepPt	0.03	0.27	n.a.	n.a.	0.18	0.35	0.04	0.12	0.02	0.14	n.a.	0.02
BGMC	0.12	0.24	n.a.	n.a.	0.18	n.a.	n.a.	0.14	0.13	0.05	n.a.	0.10
BGData	0.16	0.14	0.56	0.15	0.21	0.20	0.10	n.a.	n.a.	n.a.	0.13	0.07
Meth	0.05	0.12	0.38	0.21	0.16	0.51	0.13	0.07	0.06	0.40	0.13	0.05
MHI	0.07	0.23	0.08	0.18	0.05	< 0.01	0.03	0.01	0.07	0.11	0.06	0.04
Total Syst	0.99	3.13	1.41	1.36	1.25	1.49	1.53	1.50	1.03	1.46	1.23	0.71
Total	1.12	3.69	2.01	1.85	1.50	2.79	1.55	1.63	1.06	1.52	1.41	0.76

Table 3: Uncertainty categories assignment for the input measurements and the result of the world m_{top} combination. All values are in GeV. In the table, "n.a." stands for not applicable; "n.e." refers to uncertainties not evaluated (see text for details).

ATLAS-CONF-2014-008; CDF-NOTE-11071; CMS-PAS-TOP-13-014; D0-NOTE-6416; arXiv:1403.4427