INCLUSIVE SEARCHES FOR SQUARKS AND GLUINOS AT ATLAS

Marija Vranjes Milosavljevic
NIKHEF
on behalf of the ATLAS Collaboration
SUSY @ LHC

- Strong production: gluino pair, squark pair, gluino with associated squark
- Many possible decays => multiple search strategies:
 - Interpretation of these in both specific susy-breaking scenarios:
 - mSUGRA (minimal Supergravity)
 - NUHM (Non-Universal Higgs masses)
 - GMSB (Gauge Mediated Symmetry breaking)
 - GGM (General Gauge Mediation)
- And generic scenarios:
 - Simplified Models
 - phenomenological MSSM

What is important?
- Powerful discriminating variables
- Well-understood simulation
- Background under control
- Interpret results in multiple scenarios
IN THIS TALK:

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 lepton, 2-6 jets, EtMiss</td>
<td>arXiv: 1405.7875 (submitted to JHEP)</td>
</tr>
<tr>
<td>0 lepton, 7-10 jets, EtMiss</td>
<td>arXiv: 1308.1841 (JHEP 10 (2013) 130)</td>
</tr>
<tr>
<td>0-1 lepton, 3 b-jets, EtMiss</td>
<td>ATLAS-CONF-2013-061</td>
</tr>
<tr>
<td>1-2 lepton, 3-6 jets, EtMiss</td>
<td>ATLAS-CONF-2013-062</td>
</tr>
<tr>
<td>2 SS leptons / 3 leptons</td>
<td>arXiv: 1404.2500 (accepted by JHEP)</td>
</tr>
<tr>
<td>taus, jets, EtMiss</td>
<td>ATLAS-CONF-2013-026</td>
</tr>
<tr>
<td>diphoton, EtMiss</td>
<td>ATLAS-CONF-2014-001</td>
</tr>
<tr>
<td>multijets (RPV)</td>
<td>ATLAS-CONF-2013-091</td>
</tr>
</tbody>
</table>
SEARCH FOR SUSY: STRATEGY

SM BACKGROUND ESTIMATION - CONTROL REGIONS
(ttbar/t, W/Z+jets, Multi-jets, Diboson)

Check bkg estimate in validation regions (closer to signal regions then control regions)

Look for the excess in signal regions

MAIN BACKGROUNDS: (determination methods)

- (semi)data-driven using control regions kinematically close to signal regions
 - transfer factors (minimize systematics)
- fully data-driven:
 - jet smearing method
 - matrix method
 - templates

Interpretation:
Set model dependent / independent limits
Target: Large number of RPC models containing final states with jets and missing energy originating from the decays of \(\tilde{q} \) and \(\tilde{g} \).

- \(Z(\rightarrow \nu\nu) + \) jets bkg estimated using a sample of \(\gamma + \) jets events using a data-driven normalisation procedure.

- Multi-jets bkg estimated using data-driven technique (normalized using reversed \(\text{EtMiss}/m_{\text{eff}} \) or \(\text{EtMiss}/\sqrt{\text{HT}} \) cuts)

- Inclusive signal regions defined for increased jet multiplicity (2-6 jets) and with loose, medium and tight selections on \(m_{\text{eff}}(\text{incl}) \), \(\text{EtMiss}/m_{\text{eff}} \) or \(\text{EtMiss}/\sqrt{\text{HT}} \)

- Two dedicated SRs (2jW and 4jW) place additional requirements on the invariant masses of candidate W bosons decaying to hadrons \(\Rightarrow \) designed to improve sensitivity to models predicting \(\tilde{q}/\tilde{g} \) decays to W (via \(\tilde{\chi}^{\pm} \)), in case where \(\tilde{\chi}^{\pm} \) is nearly degenerate in mass with \(\tilde{q}/\tilde{g} \).
Lower limit of 1650 GeV for equal mass light-flavour squarks and gluinos is found for phenoMSSM models with a massless LSP. Squark masses below 850 GeV (440 GeV) are excluded, assuming mass degenerate (single light-flavour) squarks. Gluino masses below 1330 GeV are excluded in a simplified model with only gluinos and the lightest neutralino for a light LSP.
Target: High jet multiplicity scenarios from long decay chains ($\tilde{g} \rightarrow \tilde{t} \tilde{t}$, $\tilde{g} \rightarrow \tilde{q}$ (via $\tilde{\chi}^\pm$ or $\tilde{\chi}^\pm$ and $\tilde{\chi}^0_2$), $\tilde{g} \rightarrow \tilde{t} \tilde{t}$ (RPV))

Template method used to estimate background from mismeasured MET

2 streams of selection criteria:
- #jets + flavour (0,1,>=2 b-jets)
- #jets + composite jets’ mass

Composite (fat) jets are formed from reclustered anti-kt R=0.4 jets to R=1.0 jets. Mass of those jets used to isolate signal:

$$M_{\Sigma}^J = \Sigma m_j^{R=1.0}$$
\(g \rightarrow \tilde{t} \tilde{t} \) model: Gluino masses smaller than 1.1 TeV are excluded for neutralino masses below 350 GeV.
Target: various SUSY models where top or bottom quarks are produced in gluino decay chains

- Reducible bkg: $tt\bar{t}$ events in association with additional non-b jets, $tt\bar{t}+W/Z$, single top, W/Z+heavy flavour jets; irreducible bkg: $tt\bar{t}+b/\bar{b}$, $tt\bar{t}+Z/h(Z/h\to bb)$

- Reducible bkg sources estimated simultaneously using the matrix method (MM) based on number of b-tagged and non b-tagged jets including efficiencies and mistag rates.
- MC used for irreducible bkg

<table>
<thead>
<tr>
<th>baseline selection: baseline lepton veto, $p_T^{3j} > 90$ GeV, $E_T^{miss} > 150$ GeV, ≥ 4 jets with $p_T > 30$ GeV, $\Delta R_{min} > 0.5, E_T^{miss}/m^{jj}_{cut} > 0.2$, $\geq 3 b$-jets with $p_T > 30$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-01-4j-A ≥ 4 > 30 > 200 $m^{jj}_{cut} > 1000$</td>
</tr>
<tr>
<td>SR-01-4j-B ≥ 4 > 50 > 350 $m^{jj}_{cut} > 1100$</td>
</tr>
<tr>
<td>SR-01-4j-C ≥ 4 > 50 > 250 $m^{jj}_{cut} > 1300$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>baseline selection: ≥ 1 signal lepton (e, μ), $p_T^{3j} > 90$ GeV, $E_T^{miss} > 150$ GeV, ≥ 4 jets with $p_T > 30$ GeV, $\geq 3 b$-jets with $p_T > 30$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-1l-6j-A ≥ 6 > 175 > 140 > 700 > 5</td>
</tr>
<tr>
<td>SR-1l-6j-B ≥ 6 > 225 > 140 > 800 > 5</td>
</tr>
<tr>
<td>SR-1l-6j-C ≥ 6 > 275 > 160 > 900 > 5</td>
</tr>
</tbody>
</table>
- $\tilde{g} \to \tilde{t}t$ model: gluino masses below 1340 GeV are excluded for $m(\text{LSP}) < 400$ GeV while neutralino masses below 620 GeV are excluded for $m(\text{gluino}) = 1000$ GeV
- $\tilde{g} \to \tilde{t}b$ model, gluino masses below 1300 GeV are excluded for $m(\text{LSP}) < 300$ GeV while neutralino masses below 580 GeV are excluded for $m(\text{gluino}) = 1100$ GeV.
Target: pair production of gluinos or squarks (assuming degenerate first and second generation squarks) considering three different simplified models: the “one-step” models, “two-step” models with sleptons and “two-step” models without sleptons.

- Signal regions defined to target both soft and hard leptons
- Fake leptons from matrix method

- SOFT SINGLE LEPTON (optimized for compressed spectra)
 - one electron or muon $10(6)\text{GeV} < p_T < 25 \text{ GeV}$
 - 3 jets ($\text{EtMiss} > 400 \text{ GeV}$) OR 5 jets ($\text{EtMiss} > 300 \text{ GeV}$)

- HARD SINGLE LEPTON
 - one electron or muon $p_T > 25 \text{ GeV}$
 - 3 jets ($\text{EtMiss} > 500 \text{ GeV}$) OR 5 jets ($\text{EtMiss} > 300 \text{ GeV}$) OR 6 jets ($\text{EtMiss} > 350 \text{ GeV}$)
Gluino mass up to 1.1-1.2 TeV excluded in the one-step and two-step gluino simplified models. First and second generation squark masses up to 700-750 GeV are also excluded in the one-step and two-step squark simplified models.
2 SAME SIGN LEPTONS OR 3 LEPTONS

Target: \(\tilde{g} \tilde{g} / \tilde{q} \tilde{q} / \tilde{g} \tilde{q} \) pairs production leading to same-sign or 3-lepton signatures when decaying to any final state that includes leptons;
- Scenarios with small mass differences between SUSY particles (compressed scenarios) or in RPV scenarios.

- very low background for same-sign lepton modes

- 3L signal regions increase sensitivity to longer cascades

- Data-driven estimation of charge-flip and fake lepton bkg.
Gluino-mediated top squark scenarios, favoured by naturalness arguments, are excluded for $m(gl) < [600–1000]$ GeV.
Target: GMSB, nGM (tuned version of GGM to avoid fine tuning in Higgs sector) models

- Signal regions with either 1 tau or at least 2 tau leptons
- Fake tau contribution estimated with data-driven method (ABCD)

<table>
<thead>
<tr>
<th>Signal cuts</th>
<th>1τ SR</th>
<th>2τ GMSB SR</th>
<th>2τ nGM SR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$m^{\tau_1}_T > 140$ GeV</td>
<td>$m^{\tau_1}_T + m^{\tau_2}_T \geq 150$ GeV</td>
<td>$m^{\tau_1}_T + m^{\tau_2}_T \geq 250$ GeV</td>
</tr>
<tr>
<td></td>
<td>$H_T > 800$ GeV</td>
<td>$H_T > 900$ GeV</td>
<td>$H_T > 600$ GeV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$N_{jet} \geq 4$</td>
</tr>
</tbody>
</table>

The result of the 2τ analysis in an optimised signal region can be translated into a limit on the gluino mass of 1140 GeV, independent of the $\tilde{\tau}$ mass, provided the $\tilde{\tau}$ is the NLSP.
Target: GGM models ($\tilde{\chi}^0_1$ decay to photon and gravitino)

- All backgrounds except $Z\rightarrow\nu\nu + \gamma\gamma$ estimated from data.
- Bkgd largely jets/electrons faking photons
- Here focus on strong production signal regions

Under the GGM hypothesis, lower limits on the gluino masses of 1280 GeV are set for bino masses above 50 GeV.
Target: Gluino production through all possible R-parity violating branching fractions of gluino decays to various quark flavours (6-quark final states)

- Limits are also set for decay modes through an intermediary neutralino, which leads to 10-quark final states

- A single systematic uncertainty on the background yield is determined by comparing the background prediction to the data in a wide variety of control regions

Example: extrapolation of data events from the low-jet multiplicity (3J, 4J, 5J) control regions to ≥ 6 jets signal regions

6-quark model

10-quark model
SUMMARY

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: Moriond 2014

\[\int L dt = (4.6 - 22.9) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV} \]

<table>
<thead>
<tr>
<th>Model</th>
<th>e, μ, τ, γ</th>
<th>Jets</th>
<th>E_{T}^{miss}</th>
<th>Mass limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSUGRA/CMS</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.2 TeV</td>
</tr>
<tr>
<td>MSUGRA/CMS</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.1 TeV</td>
</tr>
<tr>
<td>MSUGRA/CMS</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.3 TeV</td>
</tr>
<tr>
<td>MSUGRA/CMS</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.24 TeV</td>
</tr>
<tr>
<td>MSUGRA/CMS</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.2 TeV</td>
</tr>
<tr>
<td>MSUGRA/CMS</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.28 TeV</td>
</tr>
<tr>
<td>GMSB (f NLS)</td>
<td>2</td>
<td>2-4 jets</td>
<td>Yes</td>
<td>4.7</td>
<td>1.4 TeV</td>
</tr>
<tr>
<td>GMSB (f NLS)</td>
<td>2</td>
<td>2-4 jets</td>
<td>Yes</td>
<td>4.7</td>
<td>1.4 TeV</td>
</tr>
<tr>
<td>GMSB (f NLS)</td>
<td>2</td>
<td>2-4 jets</td>
<td>Yes</td>
<td>4.7</td>
<td>1.28 TeV</td>
</tr>
<tr>
<td>LSP</td>
<td>0</td>
<td>mono-jet</td>
<td>Yes</td>
<td>10.5</td>
<td>0.5 (\text{ TeV})</td>
</tr>
</tbody>
</table>

Inclusive Searches

\[\int L dt = (10.8 - 18.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV} \]

Note: The diagrams and detailed analysis are not fully transcribed due to the complexity and visual nature of the data presentation. The tables and figures provide a high-level overview of the SUSY searches and mass limits, with specific references to ATLAS experiments and corresponding publications detailing the findings.
Looking forward to Run 2 data!

No indications for SUSY particles in a large variety of search channels