

INCLUSIVE SEARCHES FOR SQUARKS AND GLUINOS AT ATLAS

Marija Vranjes Milosavljevic NIKHEF

on behalf of the ATLAS Collaboration

SUSY @ LHC

- <u>Strong production</u>: gluino pair, squark pair, gluino with associated squark
- Many possible decays => multiple search strategies:
 - Interpretation of these in both specific susy-breaking scenarios:
 - mSUGRA (minimal Supergravity)
 - NUHM (Non-Universal Higgs masses)
 - GMSB (Gauge Mediated Symmetry breaking)
 - GGM (General Gauge Mediation)
 - And generic scenarios:
 - Simplified Models
 - phenomenological MSSM

What is important?

- Powerful discriminating variables
- Well-understood simulation
- Background under control
- Interpret results in multiple scenarios

INCLUSIVE SEARCHES AT ATLAS

IN THIS TALK:

0 lepton, 2-6 jets, EtMiss

0 lepton, 7-10 jets, EtMiss

0-1 lepton, 3 b-jets, EtMiss

I-2 lepton, 3-6 jets, EtMiss

2 SS leptons / 3 leptons

taus, jets, EtMiss

diphoton, EtMiss

multijets (RPV)

arXiv: 1405.7875 (submitted to JHEP)

arXiv:1308.1841 (JHEP 10 (2013) 130)

ATLAS-CONF-2013-061

ATLAS-CONF-2013-062

arXiv:1404.2500 (accepted by JHEP)

ATLAS-CONF-2013-026

ATLAS-CONF-2014-001

ATLAS-CONF-2013-091

SEARCH FOR SUSY: STRATEGY

SM BACKGROUND ESTIMATION - CONTROL REGIONS

(ttbar/t, W/Z+jets, Multi-jets, Diboson)

Check bkg estimate in validation regions (closer to signal regions then control regions)

Look for the excess in signal regions

- (semi)data-driven using control regions kinematically close to signal regions
 - transfer factors (minimize systematics)
- fully data-driven:
 - jet smearing method
 - matrix method
 - templates

Interpretation:
Set model dependent /
independent limits

NO LEPTON + 2-6 JETS + ETMISS

Target: Large number of RPC models containing final states with jets and missing energy originating from the decays of q̃ and g̃.

- $Z(\rightarrow vv)$ +jets bkg estimated using a sample of γ +jets events using a data-driven normalisation procedure.
- Multi-jets bkg estimated using data-driven technique (normalized using reversed EtMiss/ m_{eff} or EtMiss/ \sqrt{HT} cuts)
- Inclusive signal regions defined for increased jet multiplicity (2-6 jets) and with loose, medium and tight selections on $m_{eff}(incl)$, EtMiss/ m_{eff} or EtMiss/ \sqrt{HT}
- Two dedicated SRs (2jW and 4jW) place additional requirements on the invariant masses of candidate W bosons decaying to hadrons => designed to improve sensitivity to models predicting \tilde{q}/\tilde{g} decays to W (via $\tilde{\chi}^{\pm}$), in case where $\tilde{\chi}^{\pm}$ is nearly degenerate in mass with \tilde{q}/\tilde{g} .

NO LEPTON + 2-6 JETS + ETMISS

Lower limit of 1650 GeV for equal mass light-flavour squarks and gluinos is found for phenoMSSM models with a massless LSP Squark masses below 850 GeV (440 GeV) are excluded, assuming mass degenerate (single light-flavour) squarks.

Gluino masses below 1330 GeV are excluded in a simplified model with only gluinos and the lightest neutralino for a light LSP.

NO LEPTON + 7-10 JETS + ETMISS

Target: High jet multiplicity scenarios from long decay chains $(\tilde{g} \rightarrow \tilde{t}t, \tilde{g} \rightarrow \tilde{q})$ (via $\tilde{\chi}^{\pm}$ or $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}_{2}$), $\tilde{g} \rightarrow \tilde{t}t(RPV)$)

Template method used to estimate background from mismeasured MET

2 streams of selection criteria:

- #jets + flavour (0, 1,>=2 b-jets)
- #jets + composite jets' mass

Composite (fat) jets are formed from reclustered anti-kt R=0.4 jets to R=1.0 jets. Mass of those jets used to isolate signal:

$$M_J^{\Sigma} = \Sigma m_i^{R=1.0}$$

I-lepton control region

	Multi-jet + flavour stream						Multi-jet $+M_J^\Sigma$ stream		
Identifier	8j50	9j50	≥ 10j50	7j80	≥ 8j80	≥ 8j50	≥ 9j50	≥ 10j50	
$M_J^\Sigma \; [{ m GeV}]$		_		_		> 340 and > 420 for each case			
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}$		$> 4~{\rm GeV^{1/2}}$		$> 4 \text{ GeV}^{1/2}$		$> 4 \; {\rm GeV^{1/2}}$			

NO LEPTON + 7-10 JETS + ETMISS

g→tt model: Gluino masses smaller than 1.1 TeV are excluded for neutralino masses below 350 GeV

0/I LEPTON + 3B-JETS + ETMISS

Target: various SUSY models where top or bottom quarks are produced in gluino decay chains

- Reducible bkg: ttbar events in association with additional non-b jets, ttbar+W/Z, single top, W/Z+heavy flavour jets; irreducible bkg: ttbar+b/bbar, $ttbar+Z/h(Z/h\rightarrow bb)$
 - -Reducible bkg sources estimated simultaneously using the matrix method (MM) based on number of b-tagged and non b-tagged jets including efficiencies and mistag rates.
 - -MC used for irreducible bkg

baseline selection: baseline lepton veto, $p_T^{j_1} > 90$ GeV, $E_T^{\text{miss}} > 150$ GeV, ≥ 4 jets with $p_T > 30$ GeV,

$\Delta \phi_{\min} > 0.5$, $E_{\rm T}^{\rm mass}/m_{\rm eff} > 0.2$, ≥ 3 <i>b</i> -jets with $p_T > 30$ GeV										
SR-01-4j-A	≥ 4	> 30	> 200	$m_{\rm eff}^{4\rm j}>1000$	SR-01-7j-A	≥ 7	> 30	> 200	$m_{ m eff}^{ m incl} > 1000$	
SR-01-4j-B	≥ 4	> 50	> 350	$m_{\rm eff}^{4\rm j}>1100$	SR-01-7j-B	≥7	> 30	> 350	$m_{ m eff}^{ m incl} > 1000$	
SR-01-4j-C	≥4	> 50	> 250	$m_{\rm eff}^{4j} > 1300$	SR-01-7j-C	≥7	> 30	> 250	$m_{\rm eff}^{\rm incl} > 1500$	

baseline selection: ≥ 1 signal lepton (e,μ) , $p_T^{J_1} > 90$ GeV, $E_T^{miss} > 150$ GeV,

 \geq 4 jets with $p_T > 30$ GeV, \geq 3 *b*-jets with $p_T > 30$ GeV

	,			,	• -	
SR-11-6j-A	≥6	> 175	> 140	> 700	> 5	
SR-11-6j-B	≥ 6	> 225	> 140	> 800	> 5	
SR-11-6j-C	≥6	> 275	> 160	> 900	> 5	

0/I LEPTON + 3B-JETS + ETMISS

- g̃→t̃t model: gluino masses below 1340 GeV are excluded for m(LSP)< 400 GeV while neutralino masses below 620 GeV are excluded for m(gluino)= 1000 GeV
- g̃→t̃b model, gluino masses below 1300 GeV are excluded for m(LSP)< 300 GeV while neutralino masses below 580 GeV are excluded for m(gluino)= 1100 GeV.

I-2 LEPTON + 3-6 JETS + ETMISS

Target: pair production of gluinos or squarks (assuming degenerate first and second generation squarks) considering three different simplified models: the "one-step" models, "two-step" models with sleptons and "two-step" models without sleptons.

- Signal regions defined to target both soft and hard leptons
- Fake leptons from matrix method
- SOFT SINGLE LEPTON (optimized for compressed spectra)
 - one electron or muon I0(6)GeV<pT<25 GeV
 - 3 jets (EtMiss>400 GeV) OR 5 jets (EtMiss>300 GeV)
- HARD SINGLE LEPTON
 - one electron or muon pT>25 GeV
 - 3 jets (EtMiss>500 GeV) OR 5 jets (EtMiss>300 GeV) OR 6 jets (EtMiss>350 GeV)

hard single lepton

I-2 LEPTON + 3-6 JETS + ETMISS

Gluino mass up to 1.1-1.2 TeV excluded in the one-step and two-step gluino simplified models. First and second generation squark masses up to 700-750 GeV are also excluded in the one-step and two-step squark simplified models.

2 SAME SIGN LEPTONS OR 3 LEPTONS

Target: §§ / qq / gq pairs production leading to same-sign or 3-lepton signatures when decaying to any final state that includes leptons;

- Scenarios with small mass differences between SUSY particles (compressed scenarios) or in RPV scenarios.
- very low background for samesign lepton modes
- 3L signal regions increase sensitivity to longer cascades
- Data-driven estimation of charge-flip and fake lepton bkg.

SR	Leptons	$N_{b- m jets}$	Other variables	Additional requirement on m_{eff}
SR3b	SS or 3L	≥3	$N_{ m jets} \geq 5$	$m_{\rm eff} > 350 {\rm GeV}$
SR0b	SS	= 0	$N_{\rm jets} \ge 3, E_{ m T}^{ m miss} > 150 { m GeV}, \ m_{ m T} > 100 { m GeV}$	$m_{\rm eff}{>}400~{ m GeV}$
SR1b	SS	≥1	$N_{\rm jets} \ge 3$, $E_{\rm T}^{\rm miss} > 150$ GeV, $m_{\rm T} > 100$ GeV, SR3b veto	$m_{\rm eff}{>}700~{\rm GeV}$
SR3Llow	3L	-	$N_{\rm jets} \ge 4$, 50 < $E_{ m T}^{ m miss} <$ 150 GeV, Z boson veto, SR3b veto	$m_{\rm eff}{>}400~{\rm GeV}$
${\rm SR3Lhigh}$	3L	-	$N_{\rm jets} \geq$ 4, $E_{\rm T}^{\rm miss} {>}~150$ GeV, SR3b veto	$m_{\rm eff}{>}400~{\rm GeV}$

2 SAME SIGN LEPTONS / 3 LEPTONS

Gluino-mediated top squark scenarios, favoured by naturalness arguments, are excluded for m(gl) < [600-1000] GeV

TAUS + JETS + ETMISS

Target: GMSB, nGM (tuned version of GGM to avoid fine tuning in Higgs sector) models

- Signal regions with either I tau or at least 2 tau leptons
- Fake tau contribution estimated with data-driven method (ABCD)

\tilde{g} \tilde{g} $\tilde{\chi}_{1}^{0}$ $\tilde{\tau}$ q q	$ au \frac{ ilde{G}}{ au}$	\tilde{g}	τ
$ ilde{g}_{oldsymbol{g}}$	q q $\tilde{\chi}_{1}^{\pm}$ $\tilde{\tau}$	$ \frac{\nu_{\tau}}{\tilde{G}} $	

The result of the 2τ analysis in an optimised signal region can be translated into a limit on the gluino mass of I I40 GeV, independent of the $\tilde{\tau}$ mass, provided the $\tilde{\tau}$ is the NLSP

DIPHOTON + ETMISS

Target: GGM models $(\tilde{\chi}^0_1)$ decay to photon and gravitino)

- All backgrounds except Z→νν + γγ estimated from data.
- Bkgs largely jets/electrons faking photons
- Here focus on strong production signal regions/

Under the GGM hypothesis, lower limits on the gluino masses of 1280 GeV are set for bino masses above 50 GeV.

MULTIJETS (RPV)

Target: Gluino production through all possible R-parity violating branching fractions of gluino decays to various quark flavours (6-quark final states)

- Limits are also set for decay modes through an intermediary neutralino, which leads to 10-quark final states
- A single systematic uncertainty on the background yield is determined by comparing the background prediction to the data in a wide variety of control regions

Example: extrapolation of data events from the low-jet multiplicity (3J, 4J, 5J) control regions to >=6 jets signal regions

SUMMARY

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

Status: Moriond 2014

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

							J~ (== /	. ,
	Model	e,μ,τ,γ	Jets	$E_{ m T}^{ m miss}$	$\int \mathcal{L} dt$ [fb	Mass limit		Reference
								
	MSUGRA/CMSSM	0	2-6 jets	Yes	20.3	\tilde{q}, \tilde{g} 1.7 TeV	$m(\tilde{q})=m(\tilde{g})$	ATLAS-CONF-2013-047
	MSUGRA/CMSSM	$1e, \mu$	3-6 jets	Yes	20.3	ğ 1.2 TeV	any m (\tilde{q})	ATLAS-CONF-2013-062
(A)	MSUGRA/CMSSM	0	7-10 jets	Yes	20.3	ž 1.1 TeV	any m (\tilde{q})	1308.1841
ě	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{\perp_0}^0$	0	2-6 jets	Yes	20.3	₹ 740 GeV	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	ATLAS-CONF-2013-047
5	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{0}_{\downarrow}$	0	2-6 jets	Yes	20.3		$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	ATLAS-CONF-2013-047
Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$	$1e, \mu$	3-6 jets	Yes	20.3		$m(\tilde{\chi}_{1}^{0})<200 \text{ GeV}, m(\tilde{\chi}^{\pm})=0.5(m(\tilde{\chi}_{1}^{0})+m(\tilde{\varrho}))$	ATLAS-CONF-2013-062
Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_{1}^{0}$	$2e,\mu$	0-3 jets	-	20.3		$m(\tilde{\mathcal{X}}_1^0)=0 \text{ GeV}$	ATLAS-CONF-2013-089
9/	GMSB (£ NLSP)	$2e,\mu$	2-4 jets	Yes	4.7		tanβ<15	1208.4688
Si	GMSB (NLSP)	1-2 τ	0-2 jets	Yes	20.7		tanβ >18	ATLAS-CONF-2013-026
Inclusive	GGM (bino NLSP)	2γ	-	Yes	20.3	ğ 1.28 TeV	$m(\tilde{\chi}_1^0)>50 \text{ GeV}$	ATLAS-CONF-2014-001
Ju	GGM (wino NLSP)	$1e, \mu + \gamma$		Yes	4.8		m($\tilde{\chi}_{1}^{0}$)>50 GeV	ATLAS-CONF-2012-144
	GGM (higgsino-bino NLSP)	γ	1 b	Yes	4.8		m($\tilde{\chi}_{1}^{0}$)>220 GeV	1211.1167
	GGM (higgsino NLSP)	$2e, \mu(Z)$	0-3 jets	Yes	5.8		m(Ĥ)>200 GeV	ATLAS-CONF-2012-152
	Gravitino LSP	0	mono-jet	Yes	10.5	F ^{1/2} scale 645 GeV	m(g)>10 ⁻⁴ eV	ATLAS-CONF-2012-147
'n.	$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$	0	3 b	Yes	20.1	ğ 1.2 TeV	$m(\tilde{\chi}_{1}^{0})$ <600 GeV	ATLAS-CONF-2013-061
gen. ned.	$\tilde{g} \rightarrow t t \tilde{\chi}_{\tilde{k}}^{0}$	0	7-10 jets	Yes	20.3		m($\tilde{\mathcal{X}}_{1}^{0}$) <350 GeV	1308.1841
P	$\tilde{g} \rightarrow t \tilde{\chi}_{\perp}^{0}$	$0-1 e, \mu$	3 b	Yes	20.1		$m(\tilde{\chi}_{1}^{0})$ <400 GeV	ATLAS-CONF-2013-061
30	$\tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+}$	$0-1 e, \mu$	3 b	Yes	20.1		m($\tilde{\chi}_{1}^{0}$)<300 GeV	ATLAS-CONF-2013-061
	-							

SUMMARY

