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Reasons to believe in new physics accessible to LHC:

e Naturalness of Higgs mass
e Dark matter

e "Who ordered that?”

Independent of SUSY!

“The SUSY train is late.”
— @G. Altarelli, 2001
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e Makes sense only if there is a theory where my, is calculable
In terms of more fundamental parameters.

e “Naturalness” is the requirement that mp is not the result
of a large unexplained cancelation.

m? = 44848354663004959003564458711382292 GeV?
~ 44848354663004959003564458711366667 GeV?

= (125 GeV)?

Example: m; ~ 100 TeV
= threshold correction Am? ~ 10° x (125 GeV)?
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S. Chang, ML, unpublished

The naturalness criteria relates observable quantities (mp)
to quantities that cannot be observed even in principle.

Example: t threshold contribution to mfz7

(Note: present in dimensional regularization!)
Is it an artifact of our method of calculation?

Compute loop effects in terms of observable quantities
= Nno quadratic dependence on heavy masses.
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Example: loop corrections to hh — hh
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Example: loop corrections to hh — hh
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=> canh write once-subtracted dispersion relation
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Summary:

e All quantities measurable
e No quadratic UV divergences
e No quadratic dependence on heavy masses

Extreme interpretations:

e The naturalness “problem” arises only if we insist on talk-
iIng about unphysical quantities.

The first commandment of qguantum mechanics: “Thou shalt
not ascribe reality to quantities that cannot be measured.”

e Restricting attention to the S-matrix alone is artificial.
Quantum field theory defines the theory in terms of cou-
plings, and tuning of couplings is unnatural.

My conclusion: think harder!
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Implications of Naturalness

The standard model is incomplete.

e Not UV complete

e Too many free parameters
(Gauge unification, origin of masses, mixings, 6 angle, ...)

e Dark matter

e Baryogenesis 4 V(9)

e Inflation
The strongest evidence for new physics at (101% GeVv)*
high scales is tensor modes observed by . |
BICEP2.* s
Gauge unification, v masses, flavor, ... have simplest explanation

In terms of physics at scales > TeV.

*If the result holds up.
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Implications of Naturalness

Naturalness requires a mechanism to prevent physics at high
scales from contributing to m?2.

h
X A2m?2
Amz - "/'Q'/-- ~ X
h 1672

Two mechanisms:

X .--.X )\2
: 2 _ ., T A G TR 2 _ m?2
SUSY: Am? = /Q/ e B e e (mg —m¢
Compositeness: Am; = ..~ e~
N 1612

N\ = scale of form factors
= compositeness scale
= mass scale of resonances/KK modes

Motivates A\ ~ TeV



Compositeness

mp =125 GeV
ghvv = Higgs VEV dominates
e = 1 +0(10%) electroweak symmetry breaking

Ihvv



Compositeness

mp =125 GeV
ghvv = Higgs VEV dominates
e = 1+ 0(10%) electroweak symmetry breaking

Jhvv




Compositeness

Technicolor is dead, long live ...



Compositeness

Technicolor is dead, long live ...

e PNGB Higgs



Compositeness

Technicolor is dead, long live ...

e PNGB Higgs

e Technicolor plus SUSY



Compositeness

Technicolor is dead, long live ...

e PNGB Higgs

e Technicolor plus SUSY (?77)
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PNGB Higgs

v = f (Technicolor)

v<Lf

Space of vacua: v=0

ghvv V2
S = 1+0(10%) = — <10%
f2
Ihvv
V2

tuning ~ =~ 10%

= precision Higgs coupling measurements directly probe tuning
iIn PNGB Higgs models
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PNGB Higgs

Top quark is a potential additional source of tuning:

t 2 A2
A

y % e~ Yt N\~ 4nf
/ 16712

= ~ 1% tuning

(PNGB Higgs would have preferred mp ~ 300 GeV...)

Naturalness requires additional light states

= top partners CMS {s=8TeV 19.5 fb!

BR(bW)

-

—750
—700
—650

—600

[A9D] 3ur ssew yaenb J, paatasqQ

BR(tZ) BR(tH)
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BMSSM Higgs

Naturalness = Higgs mass too small in MSSM

A~g?2 = m?~Av?~m?

h z
N 3 ms
t loops: AN ~ Vi In —

162  my

| me  \?
tuning ~ 10% x (500 G V)
e

Take as hint for BMSSM physics.
Increase Higgs quartic:

e Fterms (NMSSM, ...)

e D terms (new gauge interactions)
Another possibility:

e Higgs tadpole from “auxiliary” Higgs sector



SUSY + Technicolor

Azatov, Galloway, ML, 2012




SUSY + Technicolor

Azatov, Galloway, ML, 2012

If auxiliary sector is at a strong conformal fixed point,
SUSY breaking triggers confinement and electroweak
symmetry breaking at the TeV scale.



SUSY + Technicolor

Azatov, Galloway, ML, 2012

If auxiliary sector is at a strong conformal fixed point,
SUSY breaking triggers confinement and electroweak
symmetry breaking at the TeV scale.

Vet ~ m2HTH + kHTe™! G)) + h.c.

Kf

mﬁ >0 = V=—> “induced EWSB”
my
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Higgs quartic can be small, as is natural in SUSY

04

mp =120 GeV

e Precision electroweak? o3k 99%
of
e Flavor? o AR
= | R
Yukawa couplings ’ (/ AR
to elementary Higgs Bl =N
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ignals: S

e Non-minimal Higgs signals
A—Zh, tt, 1T
H— WW, hh Chang, ML, Salvioni, Tsai, to appear
p—WW, AA,...

® ghnhh Small
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Induced EWSB

Galloway, ML, Tsai, Zhao, 2014

Can also construct perturbative calculable models

Solid (dashed) black: Ayn/ASM = 0.5 (0.2)
0 - gy

CMS = ATLAS |

A-STT t-H b |

O Ly, s
50 100 150 200

General message: SUSY naturalness motivates BMSSM Higgs
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Generalized to mono-X searches ...
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Chang, Hutchinson, Edezath, ML 2013
An, Wang, Zhang, 2013
Bai, Berger, 2013

Relic abundance motivates renormalizable couplings to SM.

o -1 g%
QDM ~ 01 ( ann) Uann ~ —2 ~ pb for mDM ~ TeV
pb Mpwm

The “WIMP miracle”

X = singlet dark matter
Simplest models: q {
Q = SM partner

Fix coupling by requiring correct relic abundance
= parameterized by my, mo
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