Non-SUSY BSM Theory

Markus Luty UC Davis

Reasons to believe in new physics accessible to LHC:

Reasons to believe in new physics accessible to LHC:

• Naturalness of Higgs mass

Reasons to believe in new physics accessible to LHC:

- Naturalness of Higgs mass
- Dark matter

Reasons to believe in new physics accessible to LHC:

- Naturalness of Higgs mass
- Dark matter
- "Who ordered that?"

Reasons to believe in new physics accessible to LHC:

- Naturalness of Higgs mass
- Dark matter
- "Who ordered that?"

Independent of SUSY!

Reasons to believe in new physics accessible to LHC:

- Naturalness of Higgs mass
- Dark matter
- "Who ordered that?"

Independent of SUSY!

"The SUSY train is late." — G. Altarelli, 2001

What is it?

What is it?

• Makes sense only if there is a theory where m_h is calculable in terms of more fundamental parameters.

What is it?

• Makes sense only if there is a theory where m_h is calculable in terms of more fundamental parameters.

• "Naturalness" is the requirement that m_h is not the result of a large unexplained cancelation.

 $m_h^2 = 44848354663004959003564458711382292 \text{ GeV}^2$ - 44848354663004959003564458711366667 GeV^2 = (125 GeV)²

What is it?

• Makes sense only if there is a theory where m_h is calculable in terms of more fundamental parameters.

• "Naturalness" is the requirement that m_h is not the result of a large unexplained cancelation.

 $m_h^2 = 44848354663004959003564458711382292 \text{ GeV}^2$ - 44848354663004959003564458711366667 GeV^2 = (125 GeV)²

Example: $m_{\tilde{t}} \sim 100 \text{ TeV}$ \Rightarrow threshold correction $\Delta m_h^2 \sim 10^5 \times (125 \text{ GeV})^2$

S. Chang, ML, unpublished

S. Chang, ML, unpublished

The naturalness criteria relates observable quantities (m_h) to quantities that cannot be observed even in principle.

S. Chang, ML, unpublished

The naturalness criteria relates observable quantities (m_h) to quantities that cannot be observed even in principle.

Example: \tilde{t} threshold contribution to m_h^2 (Note: present in dimensional regularization!)

S. Chang, ML, unpublished

The naturalness criteria relates observable quantities (m_h) to quantities that cannot be observed even in principle.

Example: \tilde{t} threshold contribution to m_h^2 (Note: present in dimensional regularization!)

Is it an artifact of our method of calculation?

S. Chang, ML, unpublished

The naturalness criteria relates observable quantities (m_h) to quantities that cannot be observed even in principle.

Example: \tilde{t} threshold contribution to m_h^2 (Note: present in dimensional regularization!)

Is it an artifact of our method of calculation?

Compute loop effects in terms of observable quantities \Rightarrow no quadratic dependence on heavy masses.

Example: loop corrections to $hh \rightarrow hh$

Example: loop corrections to $hh \rightarrow hh$

Example: loop corrections to $hh \rightarrow hh$

Example: loop corrections to $hh \rightarrow hh$

Example: loop corrections to $hh \rightarrow hh$

Example: loop corrections to $hh \rightarrow hh$

Use to compute loop corrections to $hh \rightarrow hh$:

Example: loop corrections to $hh \rightarrow hh$

Optical theorem: Im $= \underbrace{\frac{1}{t}}_{-\frac{1}{t}} + \cdots$ $= \underbrace{\frac{y_t^2 m_h^2}{s}}_{-\frac{y_t^2 m_h^2}{s}} - y_t^4$

Use to compute loop corrections to $hh \rightarrow hh$:

$$t \to 0$$
: $\mathcal{A}(s) = \frac{1}{\pi} \int_0^\infty ds' \frac{\operatorname{Im} \mathcal{A}(s')}{s' - s} = \log \operatorname{UV} \operatorname{divergent}$

Example: loop corrections to $hh \rightarrow hh$

Optical theorem: Im

Use to compute loop corrections to $hh \rightarrow hh$:

$$t \to 0$$
: $\mathcal{A}(s) = \frac{1}{\pi} \int_0^\infty ds' \frac{\operatorname{Im} \mathcal{A}(s')}{s' - s} = \log \operatorname{UV} \operatorname{divergent}$

 \Rightarrow can write once-subtracted dispersion relation

Summary:

- All quantities measurable
- No quadratic UV divergences
- No quadratic dependence on heavy masses

Summary:

- All quantities measurable
- No quadratic UV divergences
- No quadratic dependence on heavy masses

Extreme interpretations:

Summary:

- All quantities measurable
- No quadratic UV divergences
- No quadratic dependence on heavy masses

Extreme interpretations:

• The naturalness "problem" arises only if we insist on talking about unphysical quantities.

Summary:

- All quantities measurable
- No quadratic UV divergences
- No quadratic dependence on heavy masses

Extreme interpretations:

• The naturalness "problem" arises only if we insist on talking about unphysical quantities.

The first commandment of quantum mechanics: "Thou shalt not ascribe reality to quantities that cannot be measured."

Summary:

- All quantities measurable
- No quadratic UV divergences
- No quadratic dependence on heavy masses

Extreme interpretations:

• The naturalness "problem" arises only if we insist on talking about unphysical quantities.

The first commandment of quantum mechanics: "Thou shalt not ascribe reality to quantities that cannot be measured."

• Restricting attention to the *S*-matrix alone is artificial. Quantum field theory defines the theory in terms of couplings, and tuning of couplings is unnatural.

Summary:

- All quantities measurable
- No quadratic UV divergences
- No quadratic dependence on heavy masses

Extreme interpretations:

• The naturalness "problem" arises only if we insist on talking about unphysical quantities.

The first commandment of quantum mechanics: "Thou shalt not ascribe reality to quantities that cannot be measured."

• Restricting attention to the *S*-matrix alone is artificial. Quantum field theory defines the theory in terms of couplings, and tuning of couplings is unnatural.

My conclusion: think harder!

The standard model is incomplete.

• Not UV complete

- Not UV complete
- Too many free parameters

- Not UV complete
- Too many free parameters (Gauge unification, origin of masses, mixings, θ angle, . . .)

- Not UV complete
- Too many free parameters (Gauge unification, origin of masses, mixings, θ angle, . . .)
- Dark matter

- Not UV complete
- Too many free parameters (Gauge unification, origin of masses, mixings, θ angle, . . .)
- Dark matter
- Baryogenesis
The standard model is incomplete.

- Not UV complete
- Too many free parameters (Gauge unification, origin of masses, mixings, θ angle, . . .)
- Dark matter
- Baryogenesis
- Inflation

The standard model is incomplete.

- Not UV complete
- Too many free parameters (Gauge unification, origin of masses, mixings, θ angle, . . .)
- Dark matter
- Baryogenesis
- Inflation

The strongest evidence for new physics at high scales is tensor modes observed by BICEP2.*

The standard model is incomplete.

- Not UV complete
- Too many free parameters (Gauge unification, origin of masses, mixings, θ angle, ...)
- Dark matter
- Baryogenesis
- Inflation

The strongest evidence for new physics at high scales is tensor modes observed by BICEP2.*

The standard model is incomplete.

- Not UV complete
- Too many free parameters (Gauge unification, origin of masses, mixings, θ angle, ...)
- Dark matter
- Baryogenesis
- Inflation

The strongest evidence for new physics at high scales is tensor modes observed by BICEP2.*

Gauge unification, ν masses, flavor, ... have simplest explanation in terms of physics at scales \gg TeV.

* If the result holds up.

Naturalness requires a mechanism to prevent physics at high scales from contributing to m_h^2 .

$$\Delta m_h^2 = \cdots \sim \sqrt[]{\lambda^2 m_\chi^2} \sim \frac{\lambda^2 m_\chi^2}{16\pi^2}$$

Naturalness requires a mechanism to prevent physics at high scales from contributing to m_h^2 .

$$\Delta m_h^2 = \cdots \sim \sqrt{\frac{\lambda^2 m_\chi^2}{16\pi^2}} \sim \frac{\lambda^2 m_\chi^2}{16\pi^2}$$

Two mechanisms:

Naturalness requires a mechanism to prevent physics at high scales from contributing to m_h^2 .

$$\Delta m_h^2 = \cdots \sim \bigvee^X \sim \frac{\lambda^2 m_\chi^2}{16\pi^2}$$

Two mechanisms:

SUSY: $\Delta m_h^2 = \cdots + \cdots + \cdots + \cdots + \cdots + \frac{\lambda^2}{16\pi^2} \left(m_X^2 - m_{\tilde{x}}^2 \right)$

Naturalness requires a mechanism to prevent physics at high scales from contributing to m_h^2 .

$$\Delta m_h^2 = \cdots \sim \bigvee^X \sim \frac{\lambda^2 m_\chi^2}{16\pi^2}$$

Two mechanisms:

SUSY:
$$\Delta m_h^2 = \cdots + \cdots + \cdots + \cdots + \frac{\lambda^2}{16\pi^2} \left(m_X^2 - m_{\tilde{x}}^2 \right)$$

Ñ

Compositeness:
$$\Delta m_h^2 = \cdots \sim \sum_{h=1}^{N} \sim \frac{\lambda \Lambda^2}{16\pi^2}$$

Y

 Λ = scale of form factors

Naturalness requires a mechanism to prevent physics at high scales from contributing to m_h^2 .

$$\Delta m_h^2 = \cdots \sim \bigvee^X \sim \frac{\lambda^2 m_\chi^2}{16\pi^2}$$

Two mechanisms:

SUSY:
$$\Delta m_h^2 = \cdots + \cdots + \cdots + \cdots + \cdots + \cdots + \frac{\lambda^2}{16\pi^2} \left(m_\chi^2 - m_{\tilde{\chi}}^2 \right)$$

v

Compositeness:
$$\Delta m_h^2 = \cdots \sim \sum_{h=1}^{N} \sim \frac{\lambda \Lambda^2}{16\pi^2}$$

٧/

 Λ = scale of form factors

= compositeness scale

Naturalness requires a mechanism to prevent physics at high scales from contributing to m_h^2 .

$$\Delta m_h^2 = \cdots \sim \bigvee^X \sim \frac{\lambda^2 m_\chi^2}{16\pi^2}$$

Two mechanisms:

 \sim

Compositeness:
$$\Delta m_h^2 = \cdots \sim \sum_{h=1}^{N} \sim \frac{\lambda \Lambda^2}{16\pi^2}$$

 $\Lambda =$ scale of form factors

- = compositeness scale
- = mass scale of resonances

Naturalness requires a mechanism to prevent physics at high scales from contributing to m_h^2 .

$$\Delta m_h^2 = \cdots \sim \bigvee^X \sim \frac{\lambda^2 m_\chi^2}{16\pi^2}$$

Two mechanisms:

SUSY:
$$\Delta m_h^2 = \cdots \left(\sum_{k=1}^{X} + \cdots + \cdots \right) \left(\sum_{k=1}^{X} + \cdots \right) \left(m_X^2 - m_{\tilde{X}}^2 \right)$$

 $\tilde{\mathbf{v}}$

Compositeness:
$$\Delta m_h^2 = \cdots \sim \sum_{h=1}^{N} \sim \frac{\lambda \Lambda^2}{16\pi^2}$$

 Λ = scale of form factors

- = compositeness scale
- = mass scale of resonances/KK modes

Naturalness requires a mechanism to prevent physics at high scales from contributing to m_h^2 .

$$\Delta m_h^2 = \cdots \sim \bigvee^X \sim \frac{\lambda^2 m_\chi^2}{16\pi^2}$$

Two mechanisms:

 \sim

Compositeness:
$$\Delta m_h^2 = \cdots \sim \sum_{h=1}^{X} \sim \frac{\lambda \Lambda^2}{16\pi^2}$$

 Λ = scale of form factors

- = compositeness scale
- = mass scale of resonances/KK modes

Motivates $\Lambda \sim \text{TeV}$

 $m_h = 125 \text{ GeV}$ $\frac{g_{hVV}}{g_{hVV}^{(SM)}} = 1 + O(10\%)$

⇒ Higgs VEV dominates electroweak symmetry breaking

 $m_h = 125 \text{ GeV}$ $\frac{g_{hVV}}{g_{hVV}^{(SM)}} = 1 + O(10\%)$

⇒ Higgs VEV dominates electroweak symmetry breaking

Technicolor is dead, long live ...

Technicolor is dead, long live ...

• PNGB Higgs

Technicolor is dead, long live ...

- PNGB Higgs
- Technicolor plus SUSY

Technicolor is dead, long live ...

- PNGB Higgs
- Technicolor plus SUSY (???)

Georgi, Kaplan, 1984 : Contino, Nomura, Pomarol, 2003 :

Georgi, Kaplan, 1984 : Contino, Nomura, Pomarol, 2003 :

v = f (Technicolor)

v = f (Technicolor)

 \Rightarrow precision Higgs coupling measurements directly probe tuning in PNGB Higgs models

Top quark is a potential additional source of tuning:

Top quark is a potential additional source of tuning:

 $\Rightarrow \sim 1\%$ tuning

Top quark is a potential additional source of tuning:

 $\Rightarrow \sim 1\%$ tuning

(PNGB Higgs would have preferred $m_h \sim 300 \text{ GeV}...$)

Top quark is a potential additional source of tuning:

 $\Rightarrow \sim 1\%$ tuning

(PNGB Higgs would have preferred $m_h \sim 300 \text{ GeV}...$)

Naturalness requires additional light states

Top quark is a potential additional source of tuning:

 $\Rightarrow \sim 1\%$ tuning

(PNGB Higgs would have preferred $m_h \sim 300 \text{ GeV}...$)

Naturalness requires additional light states

 \Rightarrow top partners

Top quark is a potential additional source of tuning:

 \Rightarrow ~ 1% tuning

(PNGB Higgs would have preferred $m_h \sim 300 \text{ GeV}...$)

Naturalness requires additional light states

BMSSM Higgs

Naturalness \Rightarrow Higgs mass too small in MSSM

BMSSM Higgs

Naturalness \Rightarrow Higgs mass too small in MSSM

$$\lambda \sim g^2 \Rightarrow m_h^2 \sim \lambda v^2 \sim m_Z^2$$

BMSSM Higgs

Naturalness \Rightarrow Higgs mass too small in MSSM

$$\begin{split} \lambda \sim g^2 &\Rightarrow m_h^2 \sim \lambda v^2 \sim m_Z^2 \\ \tilde{t} \text{ loops:} & \Delta \lambda \sim \frac{3 y_t^4}{16 \pi^2} \ln \frac{m_{\tilde{t}}}{m_t} \end{split}$$
Naturalness \Rightarrow Higgs mass too small in MSSM

$$\begin{split} \lambda \sim g^2 &\Rightarrow m_h^2 \sim \lambda v^2 \sim m_Z^2 \\ \tilde{t} \text{ loops:} & \Delta \lambda \sim \frac{3y_t^4}{16\pi^2} \ln \frac{m_{\tilde{t}}}{m_t} \\ & \text{tuning} \sim 10\% \times \left(\frac{m_{\tilde{t}}}{500 \text{ GeV}}\right)^2 \end{split}$$

Naturalness \Rightarrow Higgs mass too small in MSSM

$$\begin{split} \lambda \sim g^2 &\Rightarrow m_h^2 \sim \lambda v^2 \sim m_Z^2 \\ \tilde{t} \text{ loops:} & \Delta \lambda \sim \frac{3y_t^4}{16\pi^2} \ln \frac{m_{\tilde{t}}}{m_t} \\ & \text{tuning} \sim 10\% \times \left(\frac{m_{\tilde{t}}}{500 \text{ GeV}}\right)^2 \end{split}$$

Take as hint for BMSSM physics.

Naturalness \Rightarrow Higgs mass too small in MSSM

$$\begin{split} \lambda \sim g^2 &\Rightarrow m_h^2 \sim \lambda v^2 \sim m_Z^2 \\ \tilde{t} \text{ loops:} & \Delta \lambda \sim \frac{3y_t^4}{16\pi^2} \ln \frac{m_{\tilde{t}}}{m_t} \\ & \text{tuning} \sim 10\% \times \left(\frac{m_{\tilde{t}}}{500 \text{ GeV}}\right)^2 \end{split}$$

Take as hint for BMSSM physics.

Increase Higgs quartic:

- F terms (NMSSM, ...)
- *D* terms (new gauge interactions)

Naturalness \Rightarrow Higgs mass too small in MSSM

$$\begin{split} \lambda \sim g^2 &\Rightarrow m_h^2 \sim \lambda v^2 \sim m_Z^2 \\ \tilde{t} \text{ loops:} & \Delta \lambda \sim \frac{3y_t^4}{16\pi^2} \ln \frac{m_{\tilde{t}}}{m_t} \\ & \text{tuning} \sim 10\% \times \left(\frac{m_{\tilde{t}}}{500 \text{ GeV}}\right)^2 \end{split}$$

Take as hint for BMSSM physics.

Increase Higgs quartic:

- F terms (NMSSM, ...)
- *D* terms (new gauge interactions)

Another possibility:

• Higgs tadpole from "auxiliary" Higgs sector

Azatov, Galloway, ML, 2012

Azatov, Galloway, ML, 2012

If auxiliary sector is at a strong conformal fixed point, SUSY breaking triggers confinement and electroweak symmetry breaking at the TeV scale.

Azatov, Galloway, ML, 2012

If auxiliary sector is at a strong conformal fixed point, SUSY breaking triggers confinement and electroweak symmetry breaking at the TeV scale.

$$V_{\text{eff}} \simeq m_H^2 H^{\dagger} H + \kappa H^{\dagger} e^{i\Pi/f} \begin{pmatrix} 0\\ f \end{pmatrix} + \text{h.c.}$$

$$m_H^2 > 0 \quad \Rightarrow \quad v = \frac{\kappa_J}{m_H^2}$$

"induced EWSB"

Higgs quartic can be small, as is natural in SUSY

Higgs quartic can be small, as is natural in SUSY

• Precision electroweak?

Higgs quartic can be small, as is natural in SUSY

 $m_{h} = 120 \text{ GeV}$

• Precision electroweak?

Higgs quartic can be small, as is natural in SUSY

• Precision electroweak?

• Flavor?

Higgs quartic can be small, as is natural in SUSY

 $m_{h} = 120 \text{ GeV}$

- Precision electroweak?
- Flavor?

Yukawa couplings to elementary Higgs

Higgs quartic can be small, as is natural in SUSY

 $m_{h} = 120 \text{ GeV}$

- Precision electroweak?
- Flavor?
 Yukawa couplings
 to elementary Higgs

Signals:

Higgs quartic can be small, as is natural in SUSY

 $m_{h} = 120 \text{ GeV}$

- Precision electroweak?
- Flavor?

Yukawa couplings to elementary Higgs

Signals:

• Non-minimal Higgs signals

A → Zh, tt, ττ H → WW, hh

 $\rho \rightarrow WW, AA, \ldots$

Chang, ML, Salvioni, Tsai, to appear

Higgs quartic can be small, as is natural in SUSY

 $m_{h} = 120 \text{ GeV}$

- Precision electroweak?
- Flavor?

Yukawa couplings to elementary Higgs

Signals:

• Non-minimal Higgs signals

 $A \to Zh, tt, \tau\tau$

- $H \rightarrow WW, hh$
- $\rho \rightarrow WW, AA, \ldots$

Chang, ML, Salvioni, Tsai, to appear

• g_{hhh} small

Induced EWSB

Galloway, ML, Tsai, Zhao, 2014

Can also construct perturbative calculable models

Induced EWSB

Galloway, ML, Tsai, Zhao, 2014

Can also construct perturbative calculable models

General message: SUSY naturalness motivates BMSSM Higgs

It exists. It is BSM.

It exists. It is BSM.

 \Rightarrow search for effective interactions coupling SM with SM

It exists. It is BSM.

 \Rightarrow search for effective interactions coupling SM with SM

$$\mathcal{L}_{\text{eff}} \sim \frac{1}{M^n} |\text{SM}|^2 |\text{DM}|^2$$

Bai, Fox, Harnik, 2010 Beltran, Hooper, Kolb, Krusberg, Tait, 2010

It exists. It is BSM.

 \Rightarrow search for effective interactions coupling SM with SM

$$\mathcal{L}_{\text{eff}} \sim \frac{1}{M^n} |\text{SM}|^2 |\text{DM}|^2$$

Bai, Fox, Harnik, 2010

Beltran, Hooper, Kolb, Krusberg, Tait, 2010

 \Rightarrow monojet signal

It exists. It is BSM.

 \Rightarrow search for effective interactions coupling SM with SM

Bai, Fox, Harnik, 2010

Beltran, Hooper, Kolb, Krusberg, Tait, 2010

⇒ monojet signal

Generalized to mono-X searches ...

Chang, Hutchinson, Edezath, ML 2013 An, Wang, Zhang, 2013 Bai, Berger, 2013

Relic abundance motivates *renormalizable* couplings to SM.

$$\Omega_{\rm DM} \sim 0.1 \left(\frac{\sigma_{\rm ann}}{\rm pb}\right)^{-1}$$
 $\sigma_{\rm ann} \sim \frac{g^4}{m_{\rm DM}^2} \sim \rm pb$ for $m_{\rm DM} \sim {\rm TeV}$

The "WIMP miracle"

Chang, Hutchinson, Edezath, ML 2013 An, Wang, Zhang, 2013 Bai, Berger, 2013

Relic abundance motivates *renormalizable* couplings to SM.

Chang, Hutchinson, Edezath, ML 2013 An, Wang, Zhang, 2013 Bai, Berger, 2013

Relic abundance motivates *renormalizable* couplings to SM.

Fix coupling by requiring correct relic abundance \Rightarrow parameterized by m_{χ} , m_Q

Majorana fermion dark matter

Conclusions

- It is not clear if naturalness is a good guide to new physics at the LHC.
- It is important to search for new physics *everywhere*, as the LHC experiments are doing.

Conclusions

• It is not clear if naturalness is a good guide to new physics at the LHC.

• It is important to search for new physics *everywhere*, as the LHC experiments are doing.

