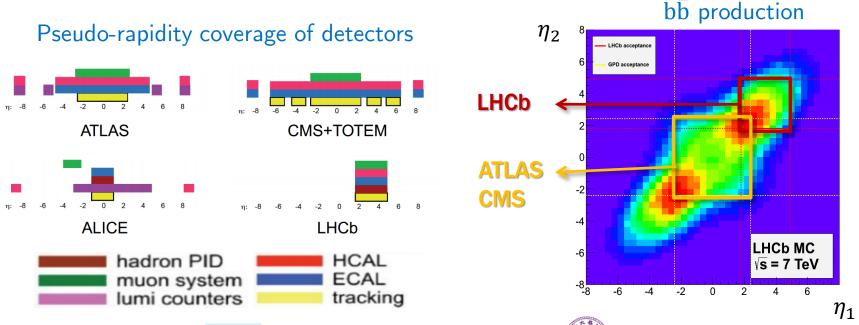
Spectroscopy

Yiming Li (Tsinghua University)
On behalf of LHCb collaboration
(Including results from ATLAS and CMS collaborations)

Content


- Heavy flavour spectroscopy at LHC
- Recent LHC results
 - Exotics
 - Heavy baryons
 - B_c physics
- Summary

(Heavy flavour) spectroscopy

- Thanks to large \sqrt{s} at LHC, $b\overline{b}/c\overline{c}$ are produced prolifically
 - $\sim 10^{11} \, b \, \bar{b}$ pairs/yr in forward region
 - 20 times more for $c\bar{c}$
- Various theoretical models make predictions on the heavy hadron production and properties $(M, \tau, Br...)$
 - Need test by precise measurement
 - New states/decays provide inputs to theory
- In search of new physics (CP violation, rare decays...), these are SM background to be well understood

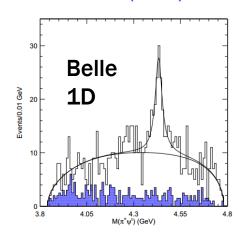
LHC experiments

- LHC detectors cover different acceptance and kinematic range ⇒ complementary on spectroscopy studies
 - ALICE: dedicated heavy-ion detector
 - ATLAS + CMS: general purpose (high $p_{\rm T}$ low η)
 - LHCb: designed for heavy-flavour physics (2< η < 5, low $p_{\rm T}$)

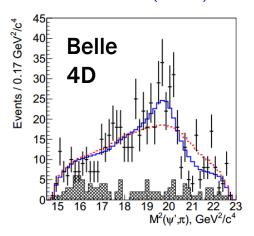
Exotic states

- Observation of $Z(4430)^+$
- Evidence of $X(3872) \rightarrow \psi(2S)\gamma$

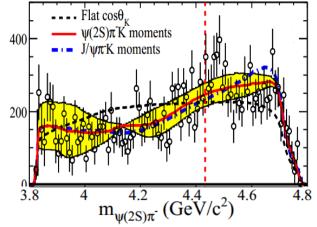
Monica Pepe Altarelli "Exotic charmonium-like spectroscopy at LHCb"


$Z(4430)^{+}$

- Belle observed $Z(4430)^+$ in $B^0 \rightarrow \psi(2S)\pi^-K^+$ in 2008
- 4D angular analysis favours 1+ over 0-, 1-, 2- and 2+


$$M = 4485^{+22+28}_{-22-11} \text{ MeV}/c^2,$$

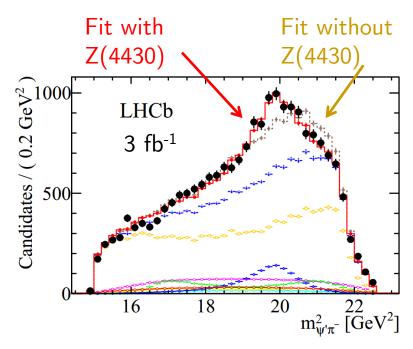
 $\Gamma = 200^{+41+26}_{-46-35} \text{ MeV}.$


BaBar could explain the enhancement by reflection of known K^* states, but doesn't rule out existence of Z(4430)

Belle PRL 100 (2008) 142001

Belle PRD 88 (2013) 074026 BaBar PRD 79 (2009) 112001

Observation of $Z(4430)^-$ at LHCb


LHCb arXiv: 1414.1908

$$B^0 \to \psi(2S)\pi^-K^+, \ \psi(2S) \to \mu^+\mu^-$$

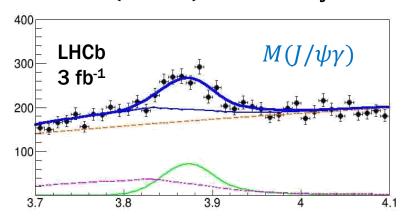
- \blacksquare B signal yield ~25k, 10 times of Belle/BaBar yield
- Full amplitude analysis performed
 - \Rightarrow Significance of $Z(4430)^-$ signal $> 13.9 \sigma$

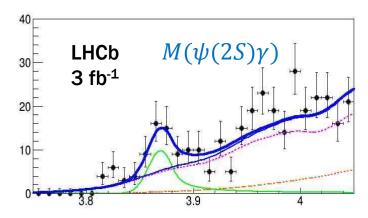
$$J^P = 1^+$$

- by excluding 0^- , 1-, 2-, 2+ by at least 9.7σ
- ullet Minimum content is car c dar u
 - Does not fit into traditional quark model

X(3872) radiative decay

- $\mathbf{X}(3872)$ discovered by Belle, the 1^{st} exotic particle observed
- Quantum numbers determined: $J^{PC} = 1^{++}$ CDF PRL 98 (2007) 132002 LHCb PRL 110 (2013) 222001
 - But the nature still unclear...
 - Traditional $c\bar{c}$? Molecule? Tetraquark? Mixture?...
- Useful information from $R = Br(\psi(2S)\gamma)/Br(J/\psi\gamma)$
 - Charmonium $c\bar{c}(2^3P_1)$: R = 1.2 ~ 15
 - $D\overline{D}^*$ molecule: $R \sim (3-4) \times 10^{-3}$
 - Molecule- $c\bar{c}$ mixture: $R = 0.5 \sim 5$
- Evidence of $X(3872) \rightarrow \psi(2S)\gamma$ (3.5 σ) by BaBar; not confirmed by Belle


 BaBar PRL 102 (2009) 132001

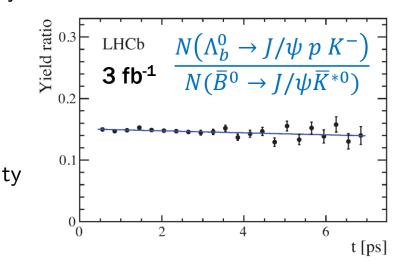

 Belle PRL 107 (2011) 091803

$X(3872) \rightarrow \psi \gamma$ at LHCb

arXiv: 1404.0275

Evidence (4.4σ) of $X(3872) \rightarrow \psi(2S)\gamma$ is found in $B^+ \rightarrow X(3872)K^+$ decay

$$\frac{\mathcal{B}(X(3872) o \psi(2S)\gamma)}{\mathcal{B}(X(3872) o J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$$


- Charmonium $c\bar{c}(2^3P_1): 1.2 \sim 15$ (compatible)
- $D\overline{D}^*$ molecule: $(3-4) \times 10^{-3}$ (not supported)
- Molecule- $c\bar{c}$ mixture: 0.5 ~ 5 (compatible)

Heavy baryons

- lacksquare Λ_b lifetime
- ${f E}_b$ and Ω_b lifetime

Λ_h lifetime

- Heavy Quark Expansion (HQE) predicts b hadron lifetime are very close to $B \Rightarrow \tau(\Lambda_h^0)/\tau(\bar{B}^0) \sim 1$ differ by only a few percent
 - LEP results indicates smaller value: 0.798 ± 0.052 or 0.786 ± 0.034
- ATLAS, CMS and CDF measured $\tau(\Lambda_h)$ lately:
 - ATLAS: $\tau = 1.449 \pm 0.036 \pm 0.017$ ps ATLAS PRD 87 (2013) 032002
 - CMS: $\tau = 1.503 \pm 0.052 \pm 0.031$ ps CMS JHEP (2013) 163
 - $\Rightarrow \tau(\Lambda_h)/\tau(B^0) \sim 1$, with large uncertainty
- LHCb 2011 1fb⁻¹ consistent with HQE:
 - $\tau(\Lambda_h)/\tau(B^0) = 0.976 \pm 0.012 \pm 0.006$ LHCb PRL 111 (2013) 102003
- Recently LHCb updated with 3 fb⁻¹
 - consistent with 2011 result and HQE
- Most precise measurement of lifetime

$$\frac{\tau_{A_b^0}}{\tau_{B^0}} = 0.974 \pm 0.006 \pm 0.004$$

$$au_{\mathsf{\Lambda}^0_b} = 1.479 \pm 0.009 \pm 0.010 \, \mathsf{ps}$$

LHCb PLB 734(2014)122

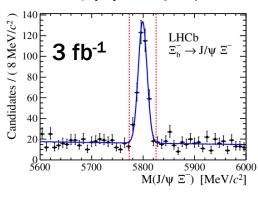
Λ_b lifetime (cont.)

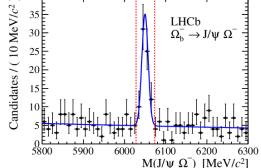
- Another LHCb measurement using $\Lambda_b \to J/\psi \Lambda$ with 1 fb⁻¹
- The results also include the most precise single measurement of B^+ , B^0 , B_s (effective) lifetime

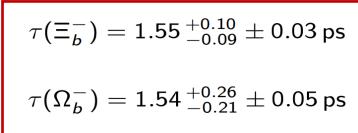
arXiv:1402.2554

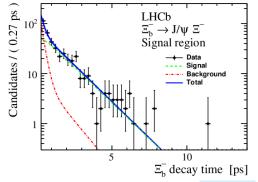
Lifetime	Value [ps]
$\tau_{B^+ \to J/\psi K^+}$	$1.637 \pm 0.004 \pm 0.003$
$ au_{B^0 o J/\psi K^{st 0}}$	$1.524\pm0.006\pm0.004$
$ au_{B^0 o J/\psi K^0_{f S}}$	$1.499 \pm 0.013 \pm 0.005$
$ au_{\Lambda_b^0 o J/\psi \Lambda}$	$1.415\pm0.027\pm0.006$
$ au_{B^0_s o J/\psi \phi}$	$1.480 \pm 0.011 \pm 0.005$

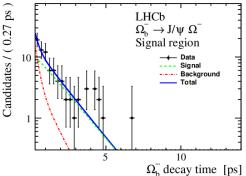
 \blacksquare Combining two Λ_b channels:


$$\tau_{A_b^0} = 1.468 \pm 0.009 \pm 0.008 \text{ ps.}$$


Ξ_b and Ω_b lifetime


- Unlike Λ_b^0 (udb), strange b baryons such as Ξ_b (dsb) or Ω_b^- (ssb) are less abundantly produced & less studied
 - the only τ measurement by CDF PRD80 (2009)072003; PRD89 (2014)07014
- LHCb measure lifetimes, using $\Xi_b^- \to J/\psi \Xi^-$, and $\Omega_b^- \to J/\psi \Omega^-$


• $J/\psi \to \mu^+\mu^-$, $\Xi^- \to \Lambda\pi^-$, $\Omega^- \to \Lambda K^-$, $\Lambda \to p\pi^-$


LHCb: arXiv:1405.1543

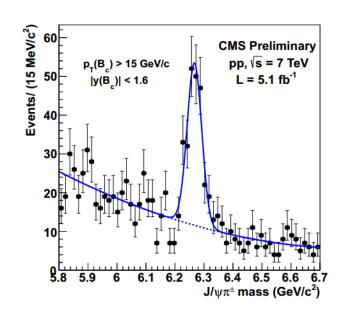
The most precise measurement, consistent with CDF result and theoretical prediction

B_c physics

- Production
- Lifetime
- Decays

Production

- Full reconstruction using $B_c^+ \to J/\psi \pi^+$
- Ratio relative to $B^+ \to J/\psi K^+$ $R_{\sigma} = \frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi \pi^+)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psi K^+)}$
- LHCb 0.37 fb⁻¹
- $p_T > 4 \text{ GeV}, 2.5 < \eta < 4.5$

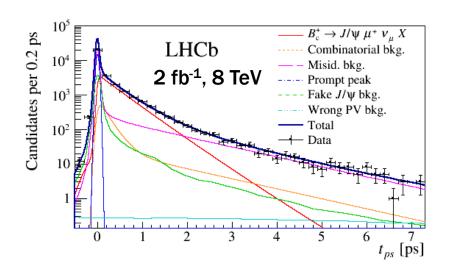

$$R_{\sigma} = (0.68 \pm 0.10 \pm 0.03 \pm 0.05(\tau_{B_c^+}))\%$$

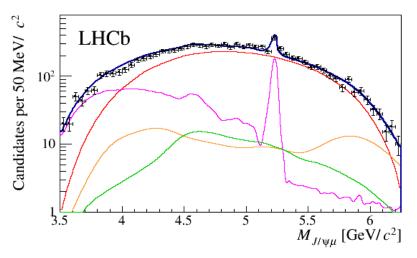
LHCb PRL 109 (2012) 232001

- CMS 5.1 fb⁻¹
- $p_T > 15 \text{ GeV}, |y| < 1.6$

$$R_{\sigma} = (0.48 \pm 0.05 \pm 0.04^{+0.05}_{-0.03}(\tau_{B_c^+}))\%$$

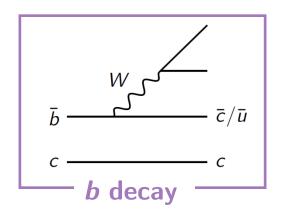
CMS CMS-PAS-BPH-12-011

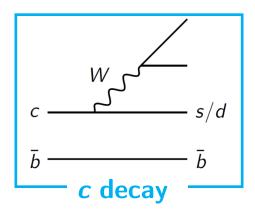


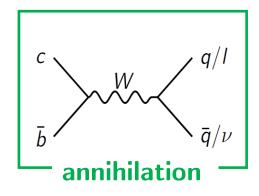

EPJC 74 (2014) 2839

- Semileptonic decay $B_c^+ \rightarrow J/\psi \mu^+ \nu$
- The most precise measurement

$$au = 509 \pm 8 \pm 12 \, \mathrm{fs}$$

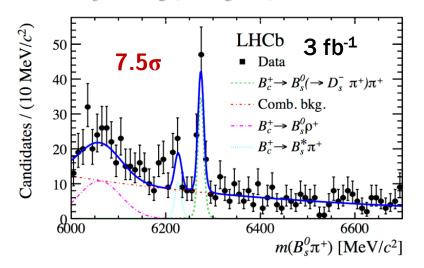

- Further improvement possible by combining with $B_c^+ \rightarrow J/\psi \pi^+$ result (uncertainties largely uncorrelated)
- Benefit many other B_c measurements (mass, production, Br...)

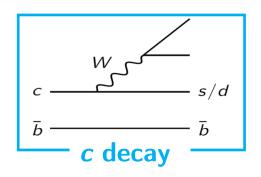




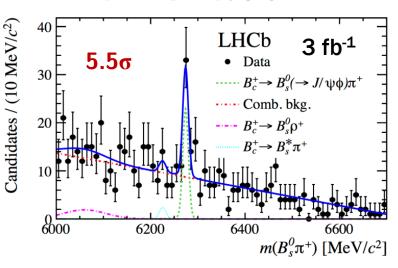
B_c decays

A large variety of decay modes expected


- Experimentally observed channels:
 - Tevatron: $J/\psi l\nu$, $J/\psi \pi^+$
 - LHCb: $J/\psi \pi^+\pi^-\pi^+$, $\psi(2S) \pi^+$, $J/\psi K^+$, $J/\psi D_s^{(*)+}$, $J/\psi K^+K^-\pi^+$, $J/\psi 3\pi^+ 2\pi^-$, $B_s\pi^+$...


$$B_c^+ \rightarrow B_s^0 \pi^+$$

- \blacksquare The first observed c decay in B_c
- $B_S^0 \to D_S^- \pi^+ \text{ or } J/\psi \phi$


LHCb PRL 111(2013)181801

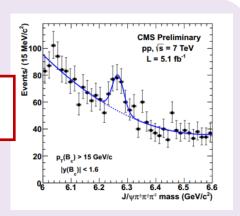
$$B_c^+ \rightarrow B_s^0 (\rightarrow D_s^- \pi^+) \pi^+$$

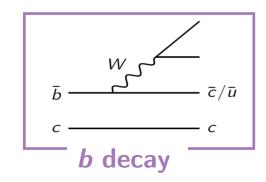
$$B_c^+ \rightarrow B_s^0 (\rightarrow J/\psi \phi) \pi^+$$

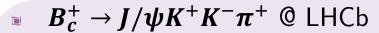
$$\frac{\sigma(B_c^+)}{\sigma(B_s^0)} \times \mathcal{B}(B_c^+ \to B_s^0 \pi^+)
= (2.37 \pm 0.31(\text{stat}) \pm 0.11(\text{syst})_{-0.13}^{+0.17}(\tau_{B_c^+})) \times 10^{-3}$$

 $\mathcal{B}(B_c \to B_s \pi) \sim 10\%$, largest known Br of B meson weak decay

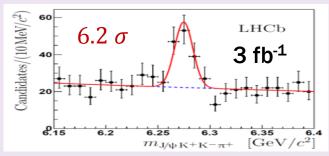
b decay in B_c

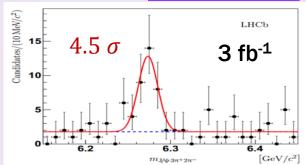

$$B_c^+ o J/\psi \pi^+ \pi^- \pi^+$$
 @ CMS


CMS-BPH-12-011


$$\frac{\mathcal{B}(B_c^+ \to J/\psi \pi^+ \pi^- \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = 2.43 \pm 0.76^{+0.46}_{-0.44}$$

Consistent with LHCb result


LHCb PRL 108(2012)251802


JHEP 1311 (2013) 094

$$\frac{\mathcal{B}(B_c^+ \to J/\psi K^+ K^- \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = 0.53 \pm 0.10 \pm 0.05$$

$$B_c^+ o J/\psi 3\pi^+ 2\pi^-$$
 @ LHCb

arXiv: 1404.0287

$$rac{{\cal B}(B_c^+ o J/\psi 3\pi^+ 2\pi^-)}{{\cal B}(B_c^+ o J/\psi \pi^+)}=1.74\pm 0.44\pm 0.24$$

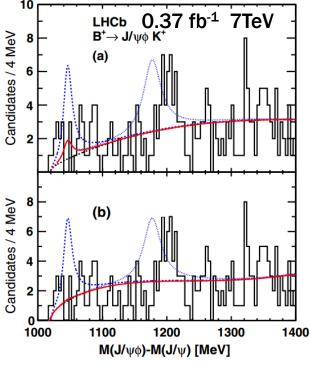
Summary

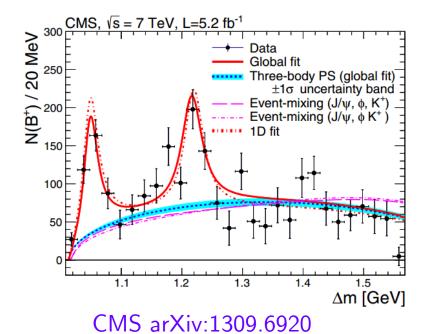
- LHC experiments have been fruitful at spectroscopy studies
 - Observed charged exotic state $Z(4430)^-$
 - Further understanding on nature of X(3872)
 - Most precise measurement of b-baryon lifetime
 - Comprehensive study on B_c meson
 - ...
- Many interesting results not covered
 - Quarkonium states, D_I , ...
- Analysis on LHC Run I data still ongoing, while Run II will bring more opportunities
- A lot more excitement to come!

Backup

Heavy quark production at LHCb

LHCb measurement at 7 TeV:


```
\sigma_{b\bar{b}} = 75.5 \pm 14.1 \,\mu b \, (2 < \eta < 6)
```

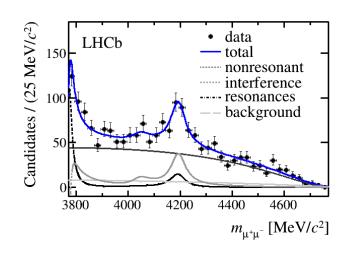

 $\sigma_{c\bar{c}} = 1419 \pm 134 \, \mu b \ \ (0 < p_{
m T} < 8 \, {
m GeV}, \, 2.0 < {
m y} < 4.5)$

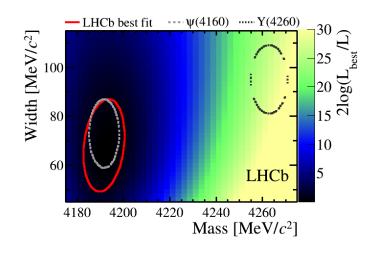
X(4140) searches @ CMS & LHCb

- CDF first reported evidence of X(4140) in $B^+ \to J/\psi \phi K^+$; later confirm with $> 5\sigma$; Belle found no evidence in $\gamma\gamma \to J/\psi\phi$
- Search in : $X(4140) \rightarrow I/\psi \phi$?

CDF PRL 102 (2009) 242002 CDF PRL arXiv: 1101.6058 Belle PRL 104 (2010) 112004

LHCb PRD 85 (2012) 091103




$\psi(4160)$ in $B \to K\mu\mu$

LHCb observed a broad peaking structure in low recoil region $(M(\mu^+\mu^-)>3770 \text{ MeV})$

- Consistent with interference between decay and a resonance ($> 6\sigma$).
- Compatible with $\psi(4160)$ observed at BES BES PLB 660 (2008) 315
- First observation of $B^+ \to \psi(4160)K^+$ and $\psi(4160) \to \mu^+\mu^-$
- $_{ t extstyle extstyle$
- Contribution in total low-recoil signal ~20%
 - Higher than theoretical prediction (~10%) EPJC 71 (2011) 1635

LHCb PRL 111 (2013) 112003

