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Soft Limits

The partonic top quark pair production process:

pi (p1) + pj(p2) −→ t(p3) + t̄(p4) + X (k) (i , j ∈ {q, q̄, g})

receives numerically large contribution when the additional final state
radiation X is soft.
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Soft Limits

The partonic top quark pair production process:

pi (p1) + pj(p2) −→ t(p3) + t̄(p4) + X (k) (i , j ∈ {q, q̄, g})

receives numerically large contribution when the additional final state
radiation X is soft.
The soft region can be parameterized by a vanishing “soft variable”

Total cross section σtt̄

β =

√

1− 4m2
t

s
→ 0

Pair invariant mass dist. dσ
dMtt̄d cos θ (“PIM kin.”)

(1− z) = 1− M2
tt̄

s
→ 0

Top quark pT dist. dσ
dpT dy

(“1PI kin.”)

s4 = (p4 + k)2 −m2
t → 0
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Factorization

In the soft limit one finds a clear hierarchy among physical scales

PIM kinematics s,M2,m2
t ≫ s(1 − z)2 ≫ Λ2

QCD

1PI kinematics s,m2
t ≫ s4 ≫ Λ2

QCD
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Factorization

In the soft limit one finds a clear hierarchy among physical scales

PIM kinematics s,M2,m2
t ≫ s(1 − z)2 ≫ Λ2

QCD

1PI kinematics s,m2
t ≫ s4 ≫ Λ2

QCD

In the soft limit the partonic cross section simplifies and factors

d σ̂ ∼ Tr
[
H(M ,mt , cos θ, µ)S(

√
s(1− z),mt , cos θ, µ)

]
+O(1− z)

d σ̂ ∼ Tr [H(s ′, t ′1, u
′
1,mt , µ)S(s4, s

′, t ′1, u
′
1,mt , µ)] +O(s4)
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Factorization

In the soft limit one finds a clear hierarchy among physical scales

PIM kinematics s,M2,m2
t ≫ s(1 − z)2 ≫ Λ2

QCD

1PI kinematics s,m2
t ≫ s4 ≫ Λ2

QCD

In the soft limit the partonic cross section simplifies and factors

d σ̂ ∼ Tr
[
H(M ,mt , cos θ, µ)S(

√
s(1− z),mt , cos θ, µ)

]
+O(1− z)

d σ̂ ∼ Tr [H(s ′, t ′1, u
′
1,mt , µ)S(s4, s

′, t ′1, u
′
1,mt , µ)] +O(s4)

Only tree-level channels (qq̄ → tt̄ and gg → tt̄) contribute

H → virtual corrections, same for PIM and 1PI

S → real corrections, different in PIM and 1PI

Separation of hard and soft scales
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What to do with factorization?

H and s̃ (Laplace transf. of S ) obey RGE of the form

d

d lnµ
H = ΓHH+HΓ

†
H

d

d lnµ
s̃ = −Γs s̃− s̃Γ†

s

where Γs are known up to NNLO and the RGEs can be solved by standard
methods

H and s̃ are known up to NLO
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d lnµ
H = ΓHH+HΓ

†
H

d

d lnµ
s̃ = −Γs s̃− s̃Γ†

s

where Γs are known up to NNLO and the RGEs can be solved by standard
methods

H and s̃ are known up to NLO

One can use this to obtain

i) All order resummation of large soft logs up to NNLL accuracy

ii) Approximate NNLO formulas for the partonic cross section

d σ̂NNLO = D3P3(λ) + D2P2(λ) + D1P1(λ) + D0P0(λ) + C0δ(λ) + R(λ)
with λ ∈ {z , s4}

Pn(z) =

[
lnn(1− z)

(1− z)

]

+

Pn(s4) =

[
lnn(s4/m

2
t )

s4

]

+
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What to do with factorization?

H and s̃ (Laplace transf. of S ) obey RGE of the form

d

d lnµ
H = ΓHH+HΓ

†
H

d

d lnµ
s̃ = −Γs s̃− s̃Γ†

s

where Γs are known up to NNLO and the RGEs can be solved by standard
methods

H and s̃ are known up to NLO

One can use this to obtain

i) All order resummation of large soft logs up to NNLL accuracy

ii) Approximate NNLO formulas for the partonic cross section

d σ̂NNLO = D3P3(λ) + D2P2(λ) + D1P1(λ) + D0P0(λ) + C0δ(λ) + R(λ)

D0, · · · ,D3 are calculated exactly (generic s, t,mt), only lnµ in C0 can be
determined
Dynamical threshold enhancement

Due to the steep fall-off of the PDFs away from the soft region, we can
obtain good predictions for hadronic cross sections
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Invariant Mass Distribution and pT

Distribution Versus Tevatron Data

NLO + NNLL

CDF data
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Normalization and shape of the distributions are consistent with data
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Invariant Mass Distribution Versus LHC Data

ATLAS Measurement of the invariant mass distribution at 7 TeV (1207.5644)
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Boosted Tops
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Top Pairs at Large Invariant Mass

Many models of physics beyond the Standard Model predict the existence
of new particles which decay into energetic top quarks and whose
characteristic signal would be either resonant bumps or more subtle
distortions in the high invariant mass region of the differential distribution
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Top Pairs at Large Invariant Mass

Many models of physics beyond the Standard Model predict the existence
of new particles which decay into energetic top quarks and whose
characteristic signal would be either resonant bumps or more subtle
distortions in the high invariant mass region of the differential distribution

In order analyze the tail of the invariant mass distribution one needs to
consider the following scale hierarchy

s,M2 ≫ m2
t ≫ s(1− z)2 ≫ Λ2

QCD

(so far we considered M ∼ mt)
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Top Pairs at Large Invariant Mass

Many models of physics beyond the Standard Model predict the existence
of new particles which decay into energetic top quarks and whose
characteristic signal would be either resonant bumps or more subtle
distortions in the high invariant mass region of the differential distribution

In order analyze the tail of the invariant mass distribution one needs to
consider the following scale hierarchy

s,M2 ≫ m2
t ≫ s(1− z)2 ≫ Λ2

QCD

(so far we considered M ∼ mt)

Goal: Framework for simultaneous resummation of
[
lnn(1−z)

1−z

]

+
and lnn

(
mt

M

)
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Factorization in PIM Kinematics

(schematically)
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What to do with the factorization formula?

All of the factors are know to NLO; the anomalous dimensions entering the
corresponding RGE are know up to the order needed to implement NNLL
resummation of both small mass and soft logs
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What to do with the factorization formula?

All of the factors are know to NLO; the anomalous dimensions entering the
corresponding RGE are know up to the order needed to implement NNLL
resummation of both small mass and soft logs

but we know more

Fragmentation function and its soft component known to NNLO
[Melnikov and Mitov (’06), Neubert (’07)]

Hard functions for mt = 0 known to NNLO [Anastasiou, Glover,

Tejeda-Yeomans et al. (’00-’04), Bern, de Freitas, Dixon

(’02-’04), Broggio, AF, Pecjak, Zhang (soon)]

NNLO soft function for mt = 0 calculated [AF, Pecjak and Yang

(’12)]

We can calculate a full soft+virtual NNLO approximation to the partonic
cross section
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Soft+Virtual NNLO Approximation (in PIM)

Remember the structure of the NNLO partonic CS

d σ̂NNLO = D3P3(z) + D2P2(z) + D1P1(z)

+ D0P0(z) + C0δ(1 − z) + R(z)

We can calculate limmt→0Di . We already know Di for a generic mt

=⇒ No new information, but a strong check of our factorization
formalism
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We can calculate limmt→0Di . We already know Di for a generic mt

=⇒ No new information, but a strong check of our factorization
formalism

We can calculate limmt→0 C0 =⇒ New information !

C0 = A ln2
m2

t

M2
+ B ln

m2
t

M2
+ C +O

(
m2

t

M2

)
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Soft+Virtual NNLO Approximation (in PIM)

Remember the structure of the NNLO partonic CS

d σ̂NNLO = D3P3(z) + D2P2(z) + D1P1(z)

+ D0P0(z) + C0δ(1 − z) + R(z)

We can calculate limmt→0Di . We already know Di for a generic mt

=⇒ No new information, but a strong check of our factorization
formalism

We can calculate limmt→0 C0 =⇒ New information !

C0 = A ln2
m2

t

M2
+ B ln

m2
t

M2
+ C +O

(
m2

t

M2

)

Combine Di(M, t1,mt , µ) with limmt→0 C0(M, t1,mt , µ) to obtain an
almost complete soft + virtual NNLO cross section (only positive powers
of mt in C0 missing)
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Soft+Virtual NNLO Impact

Soft+virtual NNLO approximation produces enhancements of the
differential CS compared to approx. NNLO from soft limit alone.
The relative enhancement is larger at lower values of M and at higher
collider energy.

At large values of M NNLL soft gluon resummation effects are large
and cannot be neglected
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Boosted Tops in 1PI Kinematics

Assume a hierarchy: s ≫ m2
t ≫ s4 = (p4 + k)2 −m2

t ≫ ΛQCD
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Boosted Tops in 1PI Kinematics

(schematically)
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NNLO Elements in 1PI

◮ NNLL resummation in the double limit can be implemented
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NNLO Elements in 1PI

◮ NNLL resummation in the double limit can be implemented

H and CD known to NNLO → same as in PIM

Soft function at NNLO:
SD scale → µd ∼ mts4/s same as in PIM
SB scale → µb ∼ s4/mt [Jain, Scimemi, Stewart (’08)]

Sij scale → µs ∼ s4/
√
s [AF, Marzani, Pecjak Yang (’13)]
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NNLO Elements in 1PI

◮ NNLL resummation in the double limit can be implemented

H and CD known to NNLO → same as in PIM

Soft function at NNLO:
SD scale → µd ∼ mts4/s same as in PIM
SB scale → µb ∼ s4/mt [Jain, Scimemi, Stewart (’08)]

Sij scale → µs ∼ s4/
√
s [AF, Marzani, Pecjak Yang (’13)]

◮ We can built the soft + virtual NNLO approximation

d σ̂NNLO = D3P3(s4) + D2P2(s4) + D1P1(s4)

+ D0P0(s4) + C0δ(s4) + R(s4)

i) We obtain limmt→0Di =⇒ Check factorization

ii) limmt→0 C0 =⇒ New information
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Summary & Conclusions

NNLL Resummed /Approximate NNLO results in the soft emission
limit are available for pair invariant mass and pT/rapidity distributions
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Work is in progress to improve predictions for the boosted top
production. A resummation scheme is available for the double
resummation of soft and small mass effects in the pair invariant mass
distribution as well as for the pT distribution.
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Summary & Conclusions

NNLL Resummed /Approximate NNLO results in the soft emission
limit are available for pair invariant mass and pT/rapidity distributions

Work is in progress to improve predictions for the boosted top
production. A resummation scheme is available for the double
resummation of soft and small mass effects in the pair invariant mass
distribution as well as for the pT distribution.

Future goals:

◮ Implement double small-mass and soft-gluon resummation numerically
◮ Include electroweak corrections (important at high M)
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Backup Slides



Dynamical Threshold Enhancement

Does the soft limit provide a good approximation of the exact result?
ex. invariant mass distribution

z =
M2

s
τ =

M2

shad

dσ

dM
=

8πβ

3M

∫ 1

τ

dz

z

∑

ij=(qq̄,gg ,q̄q)

Lij

(τ

z
, µ

)

Cij (z , . . . , µ)
︸ ︷︷ ︸

partonic cross section

The limit z → 1 provides a good approximation of the complete result if

a) τ ∼ 1; . . . but the interesting region is τ < 0.3

b) Lij → 0 for z → τ ; Dynamical Threshold Enhancement



Dynamical Threshold Enhancement
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◮ Exact NLO result (dark gray band) obtained with MCFM
(Campbell, Ellis)

◮ The NLO threshold expansion −→ band between the dashed lines
(200GeV ≤ µ ≤ 800GeV; close to M/2 ≤ µ ≤ 2M)

◮ The threshold expansion agrees quite well with the exact result, even
in the low invariant mass region



Definition of the Soft Function - PIM

In momentum space

S
(

ω,
t1

M2
, µ

)

=
1

dR

∑

Xs

〈0|O†
s(0)|Xs〉〈Xs |Os(0)|0〉δ (ω − (n1 + n2) · pXs

)

with dR = N for qbarq and dR = N2 − 1 for gg and

O(x) = [S1S2S3S4] (x)

Si are Wilson lines defined as

Si = P exp

(

igs

∫ 0

−∞

ds ni · Aa(x + sni)T
a
i

)

with n2i = 0. For massive legs, ni → vi with v2i = 1
The bare functions contain poles −→ need renormalization



Soft Function at NLO

i

j

cJ c∗
I

Feynman diagram proportional to (using dim. reg. in d = 4− 2ǫ dimensions)

I1(ω, aij) =

∫

ddkδ(k2)θ(k0)
ni · nj

ni · k nj · k
δ(ω − n0 · k) = π1−ǫe−ǫγEω−1−2ǫĪ1(aij)

aij ≡ 1− n20ni · nj
2n0 · nin0 · nj

Ī1(a) =
2eǫγEΓ(−ǫ)

Γ(1 − 2ǫ)
(1 − a)−ǫ

2F1 (−ǫ,−ǫ, 1− ǫ, a)

where n0 = n1 + n2

Bare soft function matrix obtained by summing over legs and evaluating color
factors

[

S
(1)
bare

]

IJ
=

2

ω

(µ

ω

)2ǫ∑

legs

〈cI |Ti ·Tj |cJ〉Ī1(aij)



Order of the limits

In deriving the factorization formula for boosted top in PIM we

1 took the small mass limit mt/M → 0

2 took the soft emission limit z → 1

It must be possible invert the order of the limits and to obtain the same
result by taking the small mass limit of

d σ̂ = Tr [HmSm]



Order of the limits

Massive/massless amplitudes relation + IR renormalization (argument t1
suppressed)

∣
∣M(ǫ,M ,mt, µ)〉 = Z[q] (ǫ,mt ,mu)

∣
∣M(ǫ,M , µ)〉 [Mitov, Moch]

limǫ→0 Z
−1
m (ǫ,M ,mt, µ)

∣
∣M(ǫ,M ,mt , µ)〉 =

∣
∣M(M ,mt, µ)〉 [Becher, Neubert]

limǫ→0 Z
−1(ǫ,M , µ)

∣
∣M(ǫ,M ,mt , µ)〉 =

∣
∣M(M , µ)〉

[Catani

Becher, Neubert]

Combine to get a relation between Z factors and finite matching function f

Z[q] (ǫ,mt ,mu)Z−1
m (ǫ,M , µ) = f (mt , µ)Z

−1(ǫ,M ,mt, µ)

Soft factorization of the hard function

Hm
ij (M ,mt , µ) = f 2(mt , µ)Hij(M ,mt , µ)

We checked that it works to NLO, and to NNLO for µ dependent terms.



Order of the limits

In order to match the factorization formula we obtained starting from the
small mass limit we should find

Sm
ij

(√
s(1 − z),mt , µ

)
= Sij

(√
s(1− z), µ

)
⊗ CD(mt , µ)SD(mt(1− z), µ)

f (mt , µ)
⊗

CD(mt , µ)SD(mt(1− z), µ)

f (mt , µ)

The soft function is related to real emission. All real emission in the
fragmentation function is associated to SD : One would expect

f (mt , µ) = CD(mt , µ)

Instead we found difference at N3LL

f (mt , µ) = CD(mt , µ)−
(αs

4π

)2

4π2CACF

We have an (annoying) mismatch between f and CD (or between SD and
the shape function)!
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