Top quark production at CMS

Gabriele Benelli
University of Kansas
On behalf of the CMS Collaboration

Columbia University, New York City, NY, USA, June 3rd 2014
Top quark at the LHC

- Heaviest particle
 - Role in EWSB and BSM
- Decays before hadronizing:
 - Access bare quark from decay products (mostly b and W)
 - Measure mass, charge, spin and other properties
- The LHC is a top factory:
 - Precision results
 - Detailed differential measurements
 - Properties
- Top production benchmark for QCD theoretical predictions
- Instrumental for the commissioning of the experiments and for the rest of the LHC physics program
- Sensitive to new physics
Top Production at the LHC

- Top production mainly via strong interaction

- Electroweak interactions can produce single tops!

- CKM matrix element V_{tb} is regulating also top decay:
Top quark production at CMS

- Covering a selection of recent top production results from CMS
 - Strong top pair production
 - Total and differential inclusive cross-section results
 - Electroweak single top production
 - Latest CMS results in all single top production channels
- Will not cover:
 - Associated production, mass, properties (see talks by Boris Mangano and Karl Ecklund)
- Summary of the current status
Top pair total x-sect @ 7TeV

Summary of all CMS 7TeV total pair production cross-section results

![Graph showing CMS Preliminary, σ_{tt} summary, $\sqrt{s} = 7$ TeV results including CMS e/\mu+jets, CMS dilepton (ee,\mu,\mu), CMS dilepton ($e/\mu+\tau_{had}$), CMS τ_{had}+jets, CMS all jets results with error bars and uncertainties.](graph.png)
Top pair total production x-sect

Dilepton channel ($ee, \mu\mu, e\mu$)

- Selection:
 - Two isolated oppositely charged leptons
 - At least two jets, at least one b-tagged

- Main backgrounds Drell-Yan (DY), single top, diboson events

- Single top and diboson from MC, Drell-Yan and fake leptons from data
Top pair total production x-sect

Cross-section measurement:

- Event counting
- Background subtraction

Table

<table>
<thead>
<tr>
<th>System</th>
<th>e^+e^-</th>
<th>(\mu^+\mu^-)</th>
<th>e^\pm\mu^\mp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon_{\text{total}}) (%)</td>
<td>0.203 ± 0.012</td>
<td>0.270 ± 0.017</td>
<td>0.717 ± 0.033</td>
</tr>
<tr>
<td>(\sigma_{t\bar{t}}) (pb)</td>
<td>244.3 ± 5.2 ± 18.6 ± 6.4</td>
<td>235.3 ± 4.5 ± 18.6 ± 6.1</td>
<td>239.0 ± 2.6 ± 11.4 ± 6.2</td>
</tr>
</tbody>
</table>

- Main systematics: signal modeling and Jet Energy Scale (JES)
- BLUE combination of three channels (for a 172.5 GeV top mass):

\[\sigma_{t\bar{t}} = 239.0 \pm 2.1 \text{(stat.)} \pm 11.3 \text{(syst.)} \pm 6.2 \text{(lum.)} \text{ pb} \]

- Mass dependence quadratic in the range 160-185 GeV
- In agreement with NNLO perturbative QCD theoretical prediction:

\[\sigma_{t\bar{t}} = 252.9^{+6.4}_{-8.6} \text{(scale)} \pm 11.7 \text{(PDF + } \alpha_s \text{)} \text{ pb} \]

JHEP 02 (2014) 024

Top pair differential cross-sections

- Differential cross-sections as a function of several top and top decay products kinematic variables probe perturbative QCD:
 - Different regions of phase space
 - Test and tune models with measurements
 - Increased sensitivity/window to new physics effects
 - Helpful to Higgs and Beyond the Standard Model (BSM) analyses
 - Full top reconstruction necessary
- Unfolding techniques used:
 - Account for acceptance and detector effects
 - Parton or particle level information to compare with generators
Top pair differential x-sect

- General strategy:

Dilepton

CMS PAS TOP-12-028

8 TeV 12.2 fb$^{-1}$

Selection

Bin by bin counting:
- Background subtraction
- Unfolding

CMS Preliminary, 12.2 fb$^{-1}$ at $\sqrt{s} = 8$ TeV

Kin. Reconstruction

Diff. x-section

CMS Preliminary, 12.2 fb$^{-1}$ at $\sqrt{s} = 8$ TeV

L+Jets

CMS PAS TOP-12-027
Top pair differential x-sect dilepton

- Normalized differential cross-sections measured as a function of:
 - \(p_{T,\text{Lead},t} \), \(y_{\text{Lead},t} \), \(p_{T,\text{NLead},t} \), \(y_{\text{NLead},t} \), \(p_{T,t} \), \(y_t \), \(p_{T,t^t} \), \(y_{t^t} \), \(m_{t^t} \)
 - \(p_{T,\text{Lead},l} \), \(\eta_{\text{Lead},l} \), \(p_{T,\text{NLead},l} \), \(\eta_{\text{NLead},l} \), \(p_{T,\text{Lead},b} \), \(p_{T,b} \), \(m_{b} \), \(\eta_{\text{Lead},b} \), \(p_{T,\text{NLead},b} \), \(\eta_{\text{NLead},b} \), \(m_{lb} \)

- Tension with theory predictions for top \(p_T \) softer in data than MC:

- Better agreement with approximate NNLO

- Effect present also in 7TeV data and in lepton+jets final state
Top pair differential cross-sections

- Event level variables in lepton+jets:
 - Template fit to determine background then unfolding
 - Key variables used in SM, rare processes and new physics searches
- $H_T = \sum_{all\text{jets}} p_T^{\text{jet}}$
- $S_T = H_T + E_{T\text{miss}} + p_T^{\text{lepton}}$
- $\sum_{W} p_T^{W} = \sqrt{(p_T^{lepton} + p_{T\text{miss}})^2 + (p_y^{lepton} + p_{T\text{miss}})^2}$
- $M_T^{W} = \sqrt{(E_T^{lepton} + E_{T\text{miss}})^2 - p_T^{W^2}}$

- Overall good agreement with theoretical predictions (similar to 7TeV)
- Main systematics: model uncertainties, JES and fit/unfolding
Single top at the LHC

- Three single top production modes:
 - **s-channel**
 - **t-channel**
 - **tW**

- Electroweak interaction production and decay
- Access to CKM element V_{tb}
- Sensitive to new physics, backgrounds to several analyses
- Top cross-sections at Tevatron and the LHC

Cross sections (pb)

<table>
<thead>
<tr>
<th></th>
<th>s-channel</th>
<th>t-channel</th>
<th>tW channel</th>
<th>top pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tevatron: ppbar@1.96TeV</td>
<td>1.05</td>
<td>2.08</td>
<td>0.22*</td>
<td>7.08</td>
</tr>
<tr>
<td>(arxiv.org/pdf/0909.0037)</td>
<td></td>
<td></td>
<td>*arxiv.org/pdf/0909.0037</td>
<td></td>
</tr>
<tr>
<td>LHC: pp @ 7 TeV</td>
<td>4.56</td>
<td>65.9</td>
<td>15.6</td>
<td>163</td>
</tr>
<tr>
<td>LHC: pp @ 8 TeV</td>
<td>5.55</td>
<td>87.2</td>
<td>22.2</td>
<td>234</td>
</tr>
</tbody>
</table>

Top mass = 173 GeV

tW not accessible at Tevatron
Single top t-channel

- Highest single top production cross-section
- Systematics dominated measurement
- Only leptonic W decays considered (e, μ final states):
 - **Lepton + jets** topology:
 - Light quark jet (large $|\eta_{j'}|$)
 - Isolated lepton (μ or e)
 - Missing Transverse Energy (ν_e or ν_μ)
 - Central high p_t b-jet
 - Potential extra b-jet, broad $|\eta|$ and low p_t
 - Main backgrounds W+jets, top pairs, QCD multi-jets
 - Strategy:
 - Fit pseudorapidity of light recoil jet $|\eta_{j'}|$
Single top t-channel

- Inclusive single top t-channel cross-section:
 $$\sigma_{t\text{-}ch.} = 83.6 \pm 2.3 \text{(stat.)} \pm 7.4 \text{(syst.) pb}$$

- Single t quark and antiquark t-channel cross-sections also obtained:
 $$\sigma_{t\text{-}ch.}(t) = 53.8 \pm 1.5 \text{(stat.)} \pm 4.4 \text{(syst.) pb}$$
 $$\sigma_{t\text{-}ch.}(\bar{t}) = 27.6 \pm 1.3 \text{(stat.)} \pm 3.7 \text{(syst.) pb}$$

- All three results in agreement with theoretical predictions

- Largest uncertainties: signal modeling and JES
Single top t-channel

- Cross-section ratios (top quark/antiquark, and 8/7 TeV)

\[R_{8/7} = \frac{\sigma_{t\text{-ch.}}(8 \text{ TeV})}{\sigma_{t\text{-ch.}}(7 \text{ TeV})} = 1.24 \pm 0.08 \text{ (stat.)} \pm 0.12 \text{ (syst.)} \]

\[R_{t\text{-ch.}} = \frac{\sigma_{t\text{-ch.}}(t)}{\sigma_{t\text{-ch.}}(t)} = 1.95 \pm 0.10 \text{ (stat.)} \pm 0.19 \text{ (syst.)} \]

- From the latter it is possible to compare the predictions of several PDF sets:

- High statistics of t-channel:
 - Differential cross-section studies (top/W polarization)
 - Gives best |V_{tb}| estimates:

\[
|f_{LV} V_{tb}| = 0.979 \pm 0.045 \text{ (exp.)} \pm 0.016 \text{ (theo.)}
\]

\[
|f_{LV} V_{tb}| = 0.998 \pm 0.038 \text{ (exp.)} \pm 0.016 \text{ (theo.)}
\]

\[|V_{tb}| > 0.92 \text{ at 95\% C.L. (0} \leq |V_{tb}|^2 \leq 1) \]

See Karl Ecklund talk

Accepted by JHEP
arXiv:1403.7366

|V_{tb}| > 0.92 at 95\% C.L. (0 \leq |V_{tb}|^2 \leq 1)
Single top tW

- tW associated production observable at LHC for the first time!

- **Di-lepton** topology:

 - Two isolated leptons (ee, μμ, eμ)
 - E_T^{miss} from the two neutrinos
 - One b-jet from top decay b quark

- Main backgrounds top pairs, Z+jets
- Signal and control regions to constrain top pair and b-tagging uncertainty:
 - 1 jet 1 b-tag ($1j1t$): signal region (15-20% tW, 75% top pairs, 5% Z+Jets)
 - 2 jets 1 b-tag ($2j1t$) and 2 jets 2 b-tags ($2j2t$) control regions
- Analysis strategy:
 - Data-driven normalization of Z+jets MC (reverse Z mass veto control region)
 - Kinematic variables used to disentangle tW from top pairs
 - Multivariate Boosted Decision Tree (BDT) analysis to extract signal
Single top tW

- Likelihood fit to BDT discriminant

- Expected significance from MC: $5.4 \pm 1.4\sigma$, observed: 6.1σ

- Cross-section estimated using profile likelihood:
 - $\sigma_{tW} = 23.4 \pm 5.4\, \text{pb at 8TeV}$
 - Theoretical value ($m_{top}=173\, \text{GeV}$): $\sigma_{tW} = 22.2 \pm 0.6(\text{scale}) \pm 1.4(\text{PDF})\, \text{pb}$

- V_{tb} matrix element estimate ($|V_{tb}| >> |V_{td}|, |V_{ts}|$ and $f_{LV}=1$):
 - $|V_{tb}| = \sqrt{\frac{\sigma_{tW}}{\sigma_{th}}} = 1.03 \pm 0.12(\text{exp.}) \pm 0.04(\text{th.})$

- $|V_{tb}| > 0.78$ at 95% C.L. ($0 \leq |V_{tb}|^2 \leq 1$)

(Assume NNLQ) N. Kidonakis

Accepted by PRL
arXiv:1401.2942
Single top s-channel

- Very sensitive to new physics
- Lowest cross-section, irreducible large backgrounds (W+jets, top pairs, multijet QCD)

Analysis strategy:
- Multivariate analysis based on BDTs
- Data-driven QCD background estimate
- Top pair control region (3j2b-tags) used in the fit
- Binned maximum likelihood fit of BDT

Expected significance: 0.9σ, Observed 0.7σ

Cross-section measurement:
$$\sigma_{s\text{-ch.}} = 6.2 \pm 5.4(\text{exp.}) \pm 5.9(\text{th.}) \text{ pb} = 6.2 \pm 8.0 \text{ pb}$$

Theory prediction (NLO+NNLL order) at 8Tev:
$$\sigma_{s\text{-ch.}} = 5.55 \pm 0.08(\text{scale}) \pm 0.21(\text{PDF}) \text{ pb}$$

Assuming Standard Model signal FC 68%C.L.:
$$\sigma\text{-s-channel} = 6.2^{+8.0}_{-5.1} \text{ pb}$$

Upper limit on s-channel x-sect 11.5pb (95%C.L.)
Single top cross-sections

- Summary from CMS single top production analyses:

![Graph showing single top-quark production cross-sections](image)
Conclusions

• Top pair production cross-section measurements testing theoretical predictions
• Top pair differential cross-section challenging models
• Single top:
 • t-channel: precise new result, statistics allows for differential cross-section and properties studies
 • tW: first observation
 • s-channel: upper limit set
• No significant deviation from SM
• Analyses preparing for 13/14TeV LHC data
Thank you!
All results are public

- You can find all the CMS results with much more details at:

 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP
Back-up
Top quark at the LHC

- While the LHC is preparing for Run II 13/14TeV pp collisions:
 - Final/ongoing Run I analysis completing:
 - 5 fb\(^{-1}\)@7TeV
 - 20fb\(^{-1}\)@8TeV
 - New analyses preparing for Run II
 - Detectors completing upgrades to cope with increased luminosity and pileup
The Compact Muon Solenoid

CMS DETECTOR
- Total weight: 14,000 tonnes
- Overall diameter: 15.0 m
- Overall length: 28.7 m
- Magnetic field: 3.8 T

STEEL RETURN YOKE
- 12,500 tonnes

SILICON TRACKERS
- Pixel (100x150 μm) ~16m² ~66M channels
- Microstrips (80x180 μm) ~200m² ~9.6M channels

SUPERCONDUCTING SOLENOID
- Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
- Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
- Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
- Silicon strips ~6m² ~137,000 channels

FORWARD CALORIMETER
- Steel + Quartz fibres ~2,000 channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
- ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL)
- Brass + Plastic scintillator ~7,000 channels
Dataset(s)

- Excellent LHC performance
- Two large datasets exploited
- High recording efficiency
- Event pile-up challenge
Event pile-up

Peak: 37 pileup events
Design value
25 pileup events
(L=10^{34}, BX=25 ns)

Event from special high pu run:
78 reconstructed vertices and 2 muons...
Top Quark Signature

- Experimental challenges:
 - Detection in hadron collider environments:

- Top decays almost always into Wb:
 - Topology driven by W decay
 - Signatures are named after final states:
 - Di-lepton (both Ws leptonic decay)
 - Lepton+jets (1 leptonic, 1 hadronic)
 - Fully hadronic (both Ws hadronic decay)

- Whole detector capabilities are crucial:
 - Lepton Identification
 - Light and B jets reconstruction
 - B-tagging
 - Missing transverse energy
Top-ology

- Top decay signatures based on the fact top decay almost always into a W boson and a b quark:

<table>
<thead>
<tr>
<th>Top Pair Decay Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{t} \bar{s})</td>
</tr>
<tr>
<td>(\bar{t} \bar{d})</td>
</tr>
<tr>
<td>(e\bar{\tau})</td>
</tr>
<tr>
<td>(e\bar{\mu})</td>
</tr>
</tbody>
</table>

- Dilepton:
 - High S/B
 - Lower statistics
 - Two neutrinos
- Lepton plus jets:
 - Highest statistics
 - Good S/B
- All hadronic:
 - Full top reconstruction
 - Toughest background
- B-tagging efficiency typically 70%
Total production cross-section

- Event counts:

<table>
<thead>
<tr>
<th>Source</th>
<th>e^+e^-</th>
<th>$\mu^+\mu^-$</th>
<th>$e^\pm\mu^\mp$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drell-Yan</td>
<td>386 ± 116</td>
<td>492 ± 148</td>
<td>194 ± 58</td>
</tr>
<tr>
<td>Non-W/Z leptons</td>
<td>25 ± 10</td>
<td>114 ± 46</td>
<td>185 ± 72</td>
</tr>
<tr>
<td>Single top quark</td>
<td>127 ± 28</td>
<td>157 ± 34</td>
<td>413 ± 88</td>
</tr>
<tr>
<td>VV</td>
<td>30 ± 8</td>
<td>39 ± 10</td>
<td>94 ± 21</td>
</tr>
<tr>
<td>Total background</td>
<td>569 ± 120</td>
<td>802 ± 159</td>
<td>886 ± 130</td>
</tr>
<tr>
<td>$t\bar{t}$ dilepton signal</td>
<td>2728 ± 182</td>
<td>3630 ± 250</td>
<td>9624 ± 504</td>
</tr>
<tr>
<td>Data</td>
<td>3204</td>
<td>4180</td>
<td>9982</td>
</tr>
</tbody>
</table>

JHEP 02 (2014) 024
Total top pair x-sect 8TeV

- Data/MC agreement scaling top pair MC to measured x-sect:
Top pair total x-section

- **Systematic uncertainties to top pair total cross-section (in pb)**

<table>
<thead>
<tr>
<th>Source</th>
<th>e^+e^-</th>
<th>$\mu^+\mu^-$</th>
<th>$e^+\mu^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger efficiencies</td>
<td>4.1</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Lepton efficiencies</td>
<td>5.8</td>
<td>5.6</td>
<td>4.0</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>10.3</td>
<td>10.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>3.2</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>b-jet tagging</td>
<td>1.9</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Pileup</td>
<td>1.7</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Scale (μ_F and μ_R)</td>
<td>5.7</td>
<td>5.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Matching partons to showers</td>
<td>3.9</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Single top quark</td>
<td>2.6</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>VV</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Drell-Yan</td>
<td>10.8</td>
<td>10.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Non-W/Z leptons</td>
<td>0.9</td>
<td>3.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Total systematic</td>
<td>18.6</td>
<td>18.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>6.4</td>
<td>6.1</td>
<td>6.2</td>
</tr>
<tr>
<td>Statistical</td>
<td>5.2</td>
<td>4.5</td>
<td>2.6</td>
</tr>
</tbody>
</table>

8 TeV 5.3 fb$^{-1}$ Dilepton

JHEP 02 (2014) 024
Summary of all CMS 7TeV total pair production cross-section results

| CMS e/μ+jets | 158 ± 2 ± 10 ± 4 |
| PLB 720 (2013) 83 |
| L=2.2-2.3/fb |
| CMS dilepton (ee,μμ,μμ) | 162 ± 2 ± 5 ± 4 |
| JHEP 11 (2012) 067 (L=2.3/fb) |
| CMS dilepton (e/μ+τ_{had}) | 143 ± 14 ± 22 ± 3 |
| PRD 85 (2012) 112007 |
| L=2.2/fb |
| CMS τ_{had}+jets | 152 ± 12 ± 32 ± 3 |
| EPJC 73 (2013) 2386 (L=3.9/fb) |
| CMS all jets | 139 ± 10 ± 26 ± 3 |
| JHEP 05 (2013) 065 (L=3.5/fb) |

NNLO+NNLL (top=2.0), PDF4LHC, m_{τ_{had}} = 172.5 GeV

Scale uncertainty
scale PDF α_s uncertainty
Total pair total x-sect summary

CMS Preliminary, σ_{tt} summary, $\sqrt{s} = 7$ TeV

- **CMS e_1/μ_1+jets**
 PLB 720 (2013) 83
 (L=2.2-2.3/fb)
 $158 \pm 2 \pm 10 \pm 4$
 (val. ± stat. ± syst. ± lumi.)

- **CMS dilepton (ee_1,μ_1,μ_1)**
 JHEP 11 (2012) 067 (L=2.3/fb)
 $162 \pm 2 \pm 5 \pm 4$
 (val. ± stat. ± syst. ± lumi.)

- **CMS dilepton $(e_1/\mu_1+\tau_1)$**
 PRD 85 (2012) 112007
 (L=2.2/fb)
 $143 \pm 14 \pm 22 \pm 3$
 (val. ± stat. ± syst. ± lumi.)

- **CMS τ_1+jets**
 EPJC 73 (2013) 2386 (L=3.9/fb)
 $152 \pm 12 \pm 32 \pm 3$
 (val. ± stat. ± syst. ± lumi.)

- **CMS all jets**
 JHEP 05 (2013) 065 (L=3.5/fb)
 $139 \pm 10 \pm 26 \pm 3$
 (val. ± stat. ± syst. ± lumi.)

CMS Preliminary, σ_{tt} summary, $\sqrt{s} = 8$ TeV

- **CMS dilepton (ee_1,μ_1,μ_1)**
 JHEP 02 (2014) 024 (L=5.3/fb)
 $239 \pm 2 \pm 11 \pm 6$ pb
 (val. ± stat. ± syst. ± lumi.)

- **CMS prel. e_1/μ_1+jets**
 TOP-12-006 (L=2.8/fb)
 $228 \pm 9 \pm 29 \pm 26 \pm 10$ pb
 (val. ± stat. ± syst. ± lumi.)

Note:
- NNLO+NNLL (top++ 2.0), PDF4LHC, $m_{top} = 172.5$ GeV
- scale uncertainty
- scale @ PDF @ α_s uncertainty
Top pair production x-sect

- Mass dependence in the range 160-185GeV:

\[
\frac{\sigma_{tt}}{\sigma_{tt} (m_t = 172.5)} = 1.00 - 0.009 \times (m_t - 172.5) - 0.000168 \times (m_t - 172.5)^2
\]

- Using \(m_t = 173.2 \)GeV:

\[
\sigma_{tt} = 237.5 \pm 13.1 \text{ pb}
\]
Top pair total x-sect summary

- TOPLHCWG combination, individual measurement, NNLO prediction
Top pair differential x-sect dilepton

- Normalized differential cross-sections measured as a function of:
 - Lepton: p_T, pseudorapidity separately for leading and next to leading lepton
 - Lepton pair: p_T, mass
 - b-jet: p_T, pseudorapidity separately for leading and next to leading b-jet
 - Invariant Lepton+b-jet pair mass

- Good agreement with predictions within experimental uncertainties

[Graphs showing data and predictions for dilepton combined]
Top pair differential cross-sections

- Lepton+jets final state
 - Main backgrounds: W+jets, QCD multijet
 - Similar kinematic reconstruction and unfolding technique
 - Dominant systematics: JES and model uncertainties
 - “Same” differential cross-sections (one lepton only)
 - Similar top p_T behavior observed

- Good agreement with predictions within experimental uncertainty
Single top t-channel

- Signal region:
 - Single isolated lepton (e/μ), MET
 - 2 jets, 1b-tag in top mass window (130<m_{lvb}<220GeV)
 - Fit pseudorapidity of light recoil jet |η_j'|
 - Shape of W+jets and top pairs from data control regions:
 - m_{lvb} sidebands, 3jets2b-tags

Accepted by JHEP
arXiv:1403.7366
tW channel Event Selection

Selection (3 final states ee, μμ, eμ):

- Exactly 2 isolated, oppositely charged leptons,
- Leptons invariant mass $m_{ll} > 20$ GeV
- All states

- Z mass veto ($m_{ll} < 81$ GeV, $m_{ll} > 101$ GeV)
- $E_T^{\text{miss}} > 50$ GeV

- Signal and control regions defined by jet multiplicity and b-tagging:
 - 1 jet 1 b-tag ($1j1t$): signal region (15-20% tW, 75% top pairs, 5% Z+Jets)
 - 2 jets 1 b-tag ($2j1t$) and 2 jets 2 b-tags ($2j2t$) control regions to constrain top pair cross-section and b-tagging efficiency uncertainty

Analysis strategy:

- Data-driven normalization of Z+jets MC (reverse Z mass veto control region)
- Kinematic variables used to disentangle tW from top pairs
- Multivariate Boosted Decision Tree (BDT) analysis to extract signal
tW channel Event Selection Objects

Dileptonic Triggers:
- Two leptons (e or μ: ee, eμ, $\mu\mu$)
- Leading lepton $p_t > 17$GeV, second lepton $p_t > 8$GeV

Object selection:

- **Electrons:**
 - $p_t > 20$GeV
 - $|\eta| < 2.5$
 - IP < 0.04cm from beamspot
 - RelIso < 0.15 in a cone of $\Delta R < 0.3$

- **Muons:**
 - $p_t > 20$GeV
 - $|\eta| < 2.4$
 - RelIso < 0.20 in a cone of $\Delta R < 0.4$

- **Dileptonic Triggers:**
 - Two leptons (e or μ: ee, eμ, $\mu\mu$)
 - Leading lepton $p_t > 17$GeV, second lepton $p_t > 8$GeV

- **Object selection:**
 - **Electrons:**
 - $p_t > 20$GeV
 - $|\eta| < 2.5$
 - IP < 0.04cm from beamspot
 - RelIso < 0.15 in a cone of $\Delta R < 0.3$
 - **Muons:**
 - $p_t > 20$GeV
 - $|\eta| < 2.4$
 - RelIso < 0.20 in a cone of $\Delta R < 0.4$
 - **Loose Electrons:**
 - $p_t > 10$GeV
 - $|\eta| < 2.5$GeV
 - **Loose Muons:**
 - $p_t > 10$GeV
 - $|\eta| < 2.5$GeV
 - **Jets:**
 - Anti-k_t
 - $p_t > 30$GeV
 - $|\eta| < 2.4$
 - Energy and p_t corrected
 - **Loose Jets:**
 - Not “tight”
 - $p_t > 20$GeV
 - $|\eta| < 4.9$GeV
 - $|\eta| < 2.4$GeV (central)
 - **Loose Jets:**
 - Not “tight”
 - $p_t > 20$GeV
 - $|\eta| < 4.9$GeV
 - $|\eta| < 2.4$GeV (central)
- **Particle Flow corrected missing transverse energy (E_T^{miss}) used**
- **B tagging information:**
 - Tracking-based multivariate tagging algorithm
 - Data-driven pt dependent b-tagging scale factors applied
tW channel Event Selection

- Selection (3 final states ee, μμ, eμ):
 - Exactly 2 isolated, oppositely charged leptons,
 - Leptons invariant mass $m_{ll} > 20$ GeV

- Z mass veto ($m_{ll} < 81$ GeV, $m_{ll} > 101$ GeV)
- $E_T^{miss} > 50$ GeV

- Signal and control regions defined by jet multiplicity and b-tagging:
 - 1 jet 1 b-tag ($1j1t$): signal region (15-20% tW, 75% top pairs, 5% Z+Jets)
 - 2 jets 1 b-tag ($2j1t$) and 2 jets 2 b-tags ($2j2t$) control regions to constrain top pair cross-section

- Analysis strategy:
 - Data-driven normalization of Z+jets MC (reverse Z mass veto control region)
 - Kinematic variables used to disentangle tW from top pairs
 - Multivariate Boosted Decision Tree (BDT) analysis to extract signal
tW Boosted Decision Trees

- Training on 200k exclusive tW and top pair dilepton events (after selection and in the 1j1t region)
- 13 kinematic input variables chosen based on:
 - signal/background separation
 - data/MC agreement in several control regions (2j1t, 2j2t, 2j0t, 1j0t)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nloosejets</td>
<td>Number of loose jets, $p_T > 20$ GeV, $</td>
</tr>
<tr>
<td>NloosejetsCentral</td>
<td>Number of loose jets, $p_T > 20$ GeV, $</td>
</tr>
<tr>
<td>NbtaggedLoosejets</td>
<td>Number of loose jets, $p_T > 20$ GeV, CSVM btagged</td>
</tr>
<tr>
<td>$p_{T,sys}$</td>
<td>Vector sum of p_T of leptons, jet, and E_T^{miss}</td>
</tr>
<tr>
<td>H_T</td>
<td>Scalar sum of p_T of leptons, jet, and E_T^{miss}</td>
</tr>
<tr>
<td>Jet p_T</td>
<td>p_T of the leading, tight, b-tagged jet</td>
</tr>
<tr>
<td>Loose jet p_T</td>
<td>p_T of leading loose jet, defined as 0 for events with no loose jet present</td>
</tr>
<tr>
<td>$p_{T,sys}/H_T$</td>
<td>Ratio of $p_{T,sys}$ to H_T for the event</td>
</tr>
<tr>
<td>Msys</td>
<td>Invariant mass of the combination of the leptons, jet, and E_T^{miss}</td>
</tr>
<tr>
<td>centralityJLL</td>
<td>Centrality of jet and leptons</td>
</tr>
<tr>
<td>$H_T/leptons/H_T$</td>
<td>Ratio of scalar sum of p_T of the leptons to the H_T of full system</td>
</tr>
<tr>
<td>$p_{T,jll}$</td>
<td>Vector sum of p_T of jet and leptons</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>Missing transverse energy in the event</td>
</tr>
</tbody>
</table>
tW BDT Input Variables

- Sample input variable distributions in the control and signal regions:
 - **Number of loose jets** $p_T > 20\text{GeV}$
 - **P_T of the system**

![Graphs showing distributions for different categories: 1j1t, 2j1t, 2j2t, 1j1t, 2j1t, 2j2t](image)

Accepted by PRL
arXiv:1401.2942

Gabriele Benelli, Kansas University
tW Systematic Uncertainties

- Several sources of systematic uncertainties considered in both significance and cross-section estimate
- The 68% C.L. interval evaluated using profile likelihood
- **Theory shape uncertainties** estimated as the central value difference from value obtained setting nuisance parameters to +/- 1σ
- Externalized in the significance calculation
- For other sources nuisance parameters fixed to central value and confidence level interval change used as estimate
- “Statistical” uncertainty from fixing all other sources to central value

<table>
<thead>
<tr>
<th>Systematic Uncertainty</th>
<th>$\Delta\sigma$ (pb)</th>
<th>$\Delta\sigma/\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME/PS matching thresholds</td>
<td>3.25</td>
<td>14%</td>
</tr>
<tr>
<td>Q^2 scale</td>
<td>2.68</td>
<td>11%</td>
</tr>
<tr>
<td>Top quark mass</td>
<td>2.28</td>
<td>10%</td>
</tr>
<tr>
<td>Statistical</td>
<td>2.13</td>
<td>9%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>1.13</td>
<td>5%</td>
</tr>
<tr>
<td>JES</td>
<td>0.91</td>
<td>4%</td>
</tr>
<tr>
<td>$t\bar{t}$ cross section</td>
<td>0.87</td>
<td>4%</td>
</tr>
<tr>
<td>Z+jet data/MC scale factor</td>
<td>0.56</td>
<td>2%</td>
</tr>
<tr>
<td>tW DR/DS scheme</td>
<td>0.45</td>
<td>2%</td>
</tr>
<tr>
<td>PDF</td>
<td>0.33</td>
<td>1%</td>
</tr>
<tr>
<td>Lepton identification</td>
<td>0.31</td>
<td>1%</td>
</tr>
<tr>
<td>JER</td>
<td>0.27</td>
<td>1%</td>
</tr>
<tr>
<td>B-tagging data/MC scale factor</td>
<td>0.20</td>
<td>< 1%</td>
</tr>
<tr>
<td>$t\bar{t}$ Spin Correlations</td>
<td>0.12</td>
<td>< 1%</td>
</tr>
<tr>
<td>Top Pt Reweighting</td>
<td>0.12</td>
<td>< 1%</td>
</tr>
<tr>
<td>Event pile up</td>
<td>0.11</td>
<td>< 1%</td>
</tr>
<tr>
<td>E_T^{miss} modeling</td>
<td>0.07</td>
<td>< 1%</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>0.02</td>
<td>< 1%</td>
</tr>
<tr>
<td>Total</td>
<td>5.58</td>
<td>24%</td>
</tr>
</tbody>
</table>

Accepted by PRL arXiv:1401.2942
tW Cross-check analyses

- Two cross-check analyses performed, using the same event selection and the same signal and control regions with the following exceptions:
 - $p_{T,\text{sys}}$ Fit:
 - Veto extra btagged loose jets events
 - Cut on H_t in $\mu\nu$ channel ($H_t > 160\text{GeV}$)
 - Same fit as BDT but to the $p_{T,\text{sys}}$ distribution
 - Results:
 - Observed significance 4.0 sigma
 - Expected significance $3.2^{+0.4}_{-0.9}$ sigma
 - Cross section: 24.3 ± 8.6 pb

- Cut and Count:
 - Veto extra btagged loose jets events
 - Cut on H_t in $\mu\nu$ channel ($H_t > 160\text{GeV}$)
 - Fit to the event counts only in each region
 - Results:
 - Observed significance 3.6 sigma
 - Expected significance 2.8 ± 0.9 sigma
 - Cross section: 33.9 ± 8.6 pb
Significance estimated using binned likelihood fit with pseudo-experiments (lots of them!):

- Excess of events with respect to the background-only hypothesis

- Observed significance in 12.2 fb$^{-1}$ of 8 TeV data: 6.1σ

- Expected significance from MC: 5.4 ± 1.4σ

Cross-section estimated using profile likelihood:

- $\sigma_{tW} = 23.4 \pm 5.4$ pb at 8 TeV

Theoretical value ($m_{top}=173$ GeV):

- $\sigma_{tW} = 22.2 \pm 0.6$(scale) ±1.4(PDF) pb

V_{tb} matrix element estimate ($|V_{tb}| >> |V_{td}|, |V_{ts}|$ and $f_{Lv}=1$):

- $|V_{tb}| = \sqrt{\frac{\sigma_{tW}}{\sigma_{th}}} = 1.03 \pm 0.12$ (exp.) ± 0.04 (th.)

- $|V_{tb}| > 0.78$ at 95% C.L. ($0 \leq |V_{tb}|^2 \leq 1$)
Single top s-channel

- BDT analysis still not very sensitive (main systematics model uncertainties):
 - Expected significance: 0.9 sigma
 - Observed significance: 0.7 sigma
- Cross-section measurement:
 \[\sigma_{s\text{-ch.}} = 6.2 \pm 5.4(\text{exp.}) \pm 5.9(\text{th.}) \text{ pb} = 6.2 \pm 8.0 \text{ pb} \]
- Theory prediction (NLO+NNLL order) at 8 TeV:
 \[\sigma_{s\text{-ch.}} = 5.55 \pm 0.08(\text{scale}) \pm 0.21(\text{PDF}) \text{ pb} \]
- Assuming Standard Model signal, Feldmann-Cousin confidence level interval is derived:
 \[\sigma_{s\text{-ch.}} = 6.2^{+8.0}_{-5.1} \text{ pb} \]
- Upper limit on s-channel cross-section calculated with Bayesian approach 11.5 pb (95% C.L.)
Single top cross-sections

- Summary from CMS single top production analyses: