Top quark production at CMS

Gabriele Benelli University of Kansas On behalf of the CMS Collaboration

on Large Hadron Collider Physics

Columbia University, New York City, NY, USA, June 3rd 2014

Top quark at the LHC

- Heaviest particle
 - Role in EWSB and BSM
- Decays before hadronizing:
 - Access bare quark from decay products (mostly b and W)
 - Measure mass, charge, spin and other properties
- The LHC is a top factory:
 - Precision results
 - Detailed differential measurements
 - Properties

- Top production benchmark for QCD theoretical predictions
- Instrumental for the commissioning of the experiments and for the rest of the LHC physics program
- Sensitive to new physics

3

Gabriele Benelli, University of Kansas

INFN Seminar, Catania, September 26th 2013

Top quark production at CMS

- Covering a selection of recent top production results from CMS
 - Strong top pair production
 - Total and differential inclusive crosssection results
 - Electroweak single top production
 - Latest CMS results in all single top production channels
- Will not cover:
 - Associated production, mass, properties (see talks by Boris Mangano and Karl Ecklund)
- Summary of the current status

Top Pair Decay Channels

Top pair total x-sect @ 7TeV

• Summary of all CMS 7TeV total pair production cross-section results

5

LHCP2014, June 3rd 2014

Single top and diboson from MC, Drell-Yan and fake leptons from data

6

Top pair total production x-sect

Events

8000

6000

4000

2000

Dilepton channel (ee, µµ, eµ)

CMS $\sqrt{s} = 8$ TeV. L = 5.3 fb⁻¹

e±u[∓] channel

Selection: •

Step 12000 10000

8000

6000

4000

2000

Obs/Exp

0

1.4

0.6

Two isolated oppositely charged leptons •

- Data

Non W/Z

Single t DY

Uncertainty

VV

At least two jets, at least one b-tagged •

CMS \s = 8TeV, L = 5.3 fb⁻¹

e±u[∓] channel

- Data

DY

Non W/Z

Single t

Uncertainty

 ≥ 3

b-jet multiplicity

LHCP2014, June 3rd 2014

VV

Top pair total production x-sect

- Cross-section measurement:
- Event counting
- Background subtraction

S	tat. S [.]	Svst.	Lumi.									465,5165			
		•		e ⁺ e ⁻	-			$\mu^+\mu$	_			e^{\pm}	μ^{\mp}		
	$\epsilon_{\rm total}$ (2	%)	b) 0.203 ± 0.012			0.270 ± 0.017				0.717 ± 0.033					
	$\sigma_{ m tar t}$ (pb)	$244.3~\pm$	$5.2 \pm$	18.6	\pm 6.4	$235.3~\pm$	4.5 \pm	18.6	\pm 6.1	$239.0~\pm$	2.6	± 11.4	± (6.2

- Main systematics: signal modeling and Jet Energy Scale (JES)
- BLUE combination of three channels (for a 172.5 GeV top mass):

 $\sigma_{t\bar{t}} = 239.0 \pm 2.1 \,(\text{stat.}) \pm 11.3 \,(\text{syst.}) \pm 6.2 \,(\text{lum.}) \,\text{pb}$

- Mass dependence quadratic in the range 160-185GeV
- In agreement with NNLO perturbative QCD theoretical prediction:

 $\sigma_{
m t\bar{t}} = 252.9^{+6.4}_{-8.6}\,(
m scale)\pm 11.7\,(
m PDF+lpha_s)\,
m pb$

Phys. Rev. Lett. 110 (2013) 252004

CMS

Top pair differential cross-sections K

- Differential cross-sections as a function of several top and top decay products kinematic variables probe perturbative QCD:
 - Different regions of phase space
 - Test and tune models with measurements
- Increased sensitivity/window to new physics effects
- Helpful to Higgs and Beyond the Standard Model (BSM) analyses
- Full top reconstruction necessary
- Unfolding techniques used:
 - Account for acceptance and detector effects
 - Parton or particle level information to compare with generators

Top pair differential x-sect dilepton KU

- Normalized differential cross-sections measured as a function of:
 - $p_T^{\text{Lead.t}}, y^{\text{Lead.t}}, p_T^{\text{NLead.t}}, y^{\text{NLead.t}}, p_T^t, y^t, p_T^{t\bar{t}}, y^{t\bar{t}}, m^{t\bar{t}}$
 - $p_{T}^{\text{Lead.l}}, \eta^{\text{Lead.l}}, p_{T}^{\text{NLead.l}}, \eta^{\text{NLead.l}}, p_{T}^{\text{Lead.b}}, p_{T}^{\text{ll}}, m^{\text{ll}}, \eta^{\text{Lead.b}}, p_{T}^{\text{NLead.b}}, \eta^{\text{NLead.b}}, m^{\text{lb}}$
- Tension with theory predictions for top p_T softer in data than MC:

Top pair differential cross-sections KU

Event level variables in lepton+jets:

CMS PAS TOP-12-042

- Template fit to determine background then unfolding
- Key variables used in SM, rare processes and new physics searches

MET,
$$H_{\rm T} = \sum_{\rm alljets} p_{\rm T}^{\rm jet}$$
 $S_{\rm T} = H_{\rm T} + E_{\rm T}^{\rm miss} + p_{\rm T}^{\rm lepton}$

$$p_T^W = \sqrt{(p_x^{\text{lepton}} + p_x^{\text{miss}})^2 + (p_y^{\text{lepton}} + p_y^{\text{miss}})^2}$$
 $M_T^W = \sqrt{(E_T^{\text{lepton}} + E_T^{\text{miss}})^2 - p_T^{W2}}$

- Overall good agreement with theoretical predictions (similar to 7TeV)
- Main systematics: model uncertainties, JES and fit/unfolding

q

Single top t-channel

- Highest single top production cross-section
- Systematics dominated measurement
- Only leptonic W decays considered (e, µ final states):
 - **Lepton + jets** topology:

 W^+

KU 8 TeV 19.7fb⁻¹ L+Jets

Light quark jet (large |η_{j'}|)

Isolated lepton (µ or e)

Missing Transverse Energy ($v_e \text{ or } v_{\mu}$)

Central high p_t b-jet

- Potential extra b-jet, broad $|\eta|$ and low p_t
- Main backgrounds W+jets, top pairs, QCD multi-jets
- Strategy:

 W^+

- Fit pseudorapidity of light recoil jet $|\eta_{j'}|$
- Shape of W+jets and top pairs from data control regions

Gabriele Benelli, Kansas University

13

LHCP2014, June 3rd 2014

Accepted by JHEP arXiv:1403.7366

Single top t-channel

8 TeV

19.7fb⁻¹

L+Jets

Inclusive single top t-channel cross-section: 0

 $\sigma_{t-ch.} = 83.6 \pm 2.3 \, (stat.) \pm 7.4 \, (syst.) \, pb$

Single t quark and antiquark t-channel cross-sections also obtained: •

 $\sigma_{t-ch.}(t) = 53.8 \pm 1.5 \, (\text{stat.}) \pm 4.4 \, (\text{syst.}) \, \text{pb}$

 $\sigma_{t-ch.}(\bar{t}) = 27.6 \pm 1.3 \, (\text{stat.}) \pm 3.7 \, (\text{syst.}) \, \text{pb}$

All three results in agreement with theoretical predictions •

Largest uncertainties: signal modeling and JES 0

Single top tW

- tW associated production observable at LHC for the first time!
- **Di-lepton** topology:

- Main backgrounds top pairs, Z+jets
- Signal and control regions to constrain top pair and b-tagging uncertainty:
 - 1 jet 1 b-tag (1j1t): signal region (15-20% tW, 75% top pairs, 5% Z+Jets)
 - 2 jets 1 b-tag (2jlt) and 2 jets 2 b-tags (2j2t) control regions
- Analysis strategy:
 - Data-driven normalization of Z+jets MC (reverse Z mass veto control region)
 - Kinematic variables used to disentangle tW from top pairs
 - Multivariate Boosted Decision Tree (BDT) analysis to extract signal

Single top s-channel

<u>CMS PAS</u> TOP-13-009

- Very sensitive to new physics
- Lowest cross-section, irreducible large backgrounds (W+jets, top pairs, multijet QCD)
- Analysis strategy:
 - Multivariate analysis based on BDTs
 - Data-driven QCD background estimate
 - Top pair control region (3j2b-tags) used in the fit
 - Binned maximum likelihood fit of BDT
- Expected significance: 0.9σ , Observed 0.7σ
- Cross-section measurement:

$$\sigma_{s-ch.} = 6.2 \pm 5.4(exp.) \pm 5.9(th.) \text{ pb} = 6.2 \pm 8.0 \text{ pb}$$

Theory prediction (NLO+NNLL order) at 8Tev:

- $\sigma_{s-ch.} = 5.55 \pm 0.08(\text{scale}) \pm 0.21(\text{PDF}) \text{ pb}$ arXiv:1205.3453
- Assuming Standard Model signal FC 68%C.L.:

$$\sigma_{s ext{-ch.}} ~=~ 6.2^{+8.0}_{-5.1} ~ ext{pb}$$

Upper limit on s-channel x-sect 11.5pb (95%C.L.)

Single top cross-sections

• Summary from CMS single top production analyses:

Conclusions

- Top pair production cross-section measurements testing theoretical predictions
- Top pair differential cross-section challenging models
- Single top:
 - t-channel: precise new result, statistics allows for differential cross-section and properties studies
 - tW: first observation
 - s-channel: upper limit set
- No significant deviation from SM
- Analyses preparing for 13/14TeV LHC data

Thank you!

All results are public

• You can find all the CMS results with much more details at:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Back-up

Top quark at the LHC

- While the LHC is preparing for Run II 13/14TeV pp collisions:
 - Final/ongoing Run I analysis completing:
 - 5 fb⁻¹@7TeV
 - 20fb⁻¹@8TeV
 - New analyses preparing for Run II
 - Detectors completing upgrades to cope with increased luminosity and pileup

The Compact Muon Solenoid

Dataset(s)

- Excellent LHC performance
- Two large datasets exploited
- High recording efficiency
- Event pile-up challenge

CMS Integrated Luminosity, pp, 2012, $\sqrt{s}=$ 8 TeV

Event pile-up

Peak: 37 pileup events

Design value **25 pileup events** (L=10³⁴, BX=25 ns)

00 🗔 👌

Top Quark Signature

- Experimental challenges:
 - Detection in hadron collider environments:

- Top decays almost always into Wb:
 - Topology driven by W decay
- Signatures are named after final states:
 - Di-lepton (both Ws leptonic decay)
 - Lepton+jets (1 leptonic, 1 hadronic)
 - Fully hadronic (both Ws hadronic decay)
- Whole detector capabilities are crucial:
 - Lepton Identification
 - Light and B jets reconstruction
 - B-tagging
 - Missing transverse energy

Top-ology

 Top decay signatures based on the fact top decay almost always into a W boson and a b quark:

Top Pair Decay Channels

- Dilepton:
 - High S/B
 - Lower statistics
 - Two neutrinos
- Lepton plus jets:
 - Highest statistics
 - Good S/B
 - All hadronic:
 - Full top reconstruction
 - Toughest background
 - B-tagging efficiency typically 70%

•

•

Total production cross-section

• Event counts:

Total top pair x-sect 8TeV

• Data/MC agreement scaling top pair MC to measured x-sect:

Dilepton

JHEP 02 (2014) 024

Top pair total x-section

• Systematic uncertainties to top pair total cross-section (in pb)

e^+e^-	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
4.1	3.0	3.6
5.8	5.6	4.0
0.6	0.3	0.2
10.3	10.8	5.2
3.2	4.0	3.0
1.9	1.9	1.7
1.7	1.5	2.0
5.7	5.5	5.6
3.9	3.8	3.8
2.6	2.4	2.3
0.7	0.7	0.5
10.8	10.3	1.5
0.9	3.2	1.9
18.6	18.6	11.4
6.4	6.1	6.2
5.2	4.5	2.6
	e^+e^- 4.1 5.8 0.6 10.3 3.2 1.9 1.7 5.7 3.9 2.6 0.7 10.8 0.9 18.6 6.4 5.2	$e^+e^ \mu^+\mu^-$ 4.13.05.85.60.60.310.310.83.24.01.91.91.71.55.75.53.93.82.62.40.70.710.810.30.93.218.618.66.46.15.24.5

JHEP 02 (2014) 024

32

8 TeV

5.3fb⁻¹

Dilepton

Total pair total x-sect @ 7TeV

• Summary of all CMS 7TeV total pair production cross-section results

$$\sigma_{
m t\bar{t}}/\sigma_{
m t\bar{t}} (m_{
m t} = 172.5) = 1.00 - 0.009 \times (m_{
m t} - 172.5) - 0.000168 \times (m_{
m t} - 172.5)^2$$

JHEP 02 (2014) 024

• Using $m_t=173.2$ GeV:

 $\sigma_{\rm t\bar{t}}=237.5\pm13.1\,\rm pb$

Top pair total x-sect summary

• TOPLHCWG combination, individual measurement, NNLO prediction

Tevatron combination* L = 8.8 fb ATLAS+CMS Preliminary Feb 2014 ATLAS dilepton L = 0.7 fb^{-1} CMS dilepton L = 2.3 fb^{-1} TOPLHCWG ATLAS lepton+jets* L = 0.7 fb⁻¹ CMS lepton+jets L = 2.3 fb⁻¹ TOPLHCWG combination* L = 1.1 fb⁻¹ ATLAS dilepton* L = 20.3 fb⁻¹ 10² CMS dilepton L = 5.3 fb^{-1} ATLAS lepton+jets* L = 5.8 fb⁻¹ CMS lepton+jets* L = 2.8 fb⁻¹ 0 250 Preliminary 200 10 150 NNLO+NNLL (pp) 8 NNLO+NNLL (pp) Czakon, Fiedler, Mitov, PRL 110 (2013) 252004 $m_{_{top}}$ = 172.5 GeV, PDF $\oplus \, \alpha_{_S}$ uncertainties according to PDF4LHC 3 5 8 9 <u>√s</u> [TeV]

Inclusive tf cross section [pb]

Top pair differential x-sect dilepton KU Dilepton 8 TeV 12.2fb⁻¹

- Normalized differential cross-sections measured as a function of:
 - Lepton: p_T , pseudorapidity separately for leading and next to leading lepton
 - Lepton pair: p_T, mass
 - b-jet: p_T, pseudorapidity separately for leading and next to leading b-jet
 - Invariant Lepton+b-jet pair mass
- Good agreement with predictions within experimental uncertainties

Top pair differential cross-sections KU

- Lepton+jets final state
- CMS PAS TOP-12-027
- Main backgrounds: W+jets, QCD multijet
- Similar kinematic reconstruction and unfolding technique
- Dominant systematics: JES and model uncertainties
- "Same" differential cross-sections (one lepton only)
- Similar top p_T behavior observed

8 TeV 12.1fb⁻¹ L+Jets

Gabriele Benelli, Kansas University

38

LHCP2014, June 3rd 2014

Single top t-channel

- Signal region:
 - Single isolated lepton (e/μ) , MET
 - 2 jets, 1b-tag in top mass window (130<m_{lvb}<220GeV)
- Fit pseudorapidity of light recoil jet $|\eta_{j'}|$
- Shape of W+jets and top pairs from data control regions:

39

Gabriele Benelli, Kansas University

8 TeV

19.7fb

L+Jets

tW channel Event Selection

- Selection (3 final states ee, $\mu\mu$, $e\mu$):
 - Exactly 2 isolated, oppositely charged leptons,
 - Leptons invariant mass m_{11} >20 GeV
 - Z mass veto ($m_{ll} < 81 \text{GeV}, m_{ll} > 101 \text{ GeV}$)
 - $E_T^{miss} > 50 \text{ GeV}$
- Signal and control regions defined by jet multiplicity and b-tagging:
 - 1 jet 1 b-tag (1j1t): signal region (15-20% tW, 75% top pairs, 5% Z+Jets)
 - 2 jets 1 b-tag (**2j1t**) and 2 jets 2 b-tags (**2j2t**) control regions to constrain top pair cross-section and b-tagging efficiency uncertainty
- Analysis strategy:
 - Data-driven normalization of Z+jets MC (reverse Z mass veto control region)
 - Kinematic variables used to disentangle tW from top pairs
 - Multivariate Boosted Decision Tree (BDT) analysis to extract signal

All states

uu

- IP<0.04cm from beamspot
- RelIso<0.15 in a cone of ΔR <0.3
- Muons:

•

•

•

- $p_t > 20 GeV$
 - |n|<2.4
 - RelIso<0.20 in a cone of ΔR <0.4

• $p_t > 30 GeV$ • |ŋ|<2.4

• Anti-kt

• Energy and pt corrected

• |η|<2.4GeV (central)

Particle Flow corrected missing transverse energy (Et^{miss}) used •

• Loose Muons:

• pt>10GeV

|η|<2.5GeV

- B tagging information: •
 - Tracking-based multivariate tagging algorithm
 - Data-driven pt dependent b-tagging scale factors applied

tW channel Event Selection

- Selection (3 final states ee, $\mu\mu$, $e\mu$):
 - Exactly 2 isolated, oppositely charged leptons,
 - Leptons invariant mass m_{11} >20 GeV
 - Z mass veto ($m_{ll} < 81 \text{GeV}, m_{ll} > 101 \text{ GeV}$)
 - $E_T^{miss} > 50 \text{ GeV}$
- Signal and control regions defined by jet multiplicity and b-tagging:
 - 1 jet 1 b-tag (1j1t): signal region (15-20% tW, 75% top pairs, 5% Z+Jets)
 - 2 jets 1 b-tag (**2j1t**) and 2 jets 2 b-tags (**2j2t**) control regions to constrain top pair cross-section
- Analysis strategy:
 - Data-driven normalization of Z+jets MC (reverse Z mass veto control region)
 - Kinematic variables used to disentangle tW from top pairs
 - Multivariate Boosted Decision Tree (BDT) analysis to extract signal

All states

บบ

tW Boosted Decision Trees

- Training on 200k exclusive tW and top pair dilepton events (after selection and in the ljlt region)
 - MC generators:
 - Single Top: POWHEG
 - Top pairs/V+jets: MadGraph
 - VV et al: Pythia
- 13 kinematic input variables chosen based on:
 - signal/background separation
 - data/MC agreement in several control regions (2j1t, 2j2t, 2j0t, 1j0t)

Variable	Description
Nloosejets	Number of loose jets, $p_T > 20$ GeV, $ \eta < 4.9$
NloosejetsCentral	Number of loose jets, $p_T > 20$ GeV, $ \eta < 2.4$
NbtaggedLoosejets	Number of loose jets, $p_T > 20$ GeV, CSVM btagged
$p_{T,sys}$	Vector sum of p_T of leptons, jet, and E_T^{miss}
H_T	Scalar sum of p_T of leptons, jet, and E_T^{miss}
Jet p_T	p_T of the leading, tight, b-tagged jet
Loose jet p_T	p_T of leading loose jet, defined as 0 for events with no loose jet present
$p_{T,sys}/H_T$	Ratio of $p_{T,sys}$ to H_T for the event
Msys	Invariant mass of the combination of the leptons, jet, and $E_{\rm T}^{\rm miss}$
centralityJLL	Centrality of jet and leptons
$H_{T,leptons}/H_T$	Ratio of scalar sum of p_T of the leptons to the H_T of full system
p_T -jll	Vector sum of p_T of jet and leptons
$E_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse energy in the event

44

Gabriele Benelli, Kansas University

LHCP2014, June 3rd 2014

tW Systematic Uncertainties

dilepton 8 TeV 12.2fb⁻¹

• Several sources of systematic uncertainties considered in both significance and cross-section estimate

•	The 68%C.L. interval	evaluated using	Systematic Uncertainty	$\Delta \sigma$ (pb)	$\frac{\Delta \sigma}{\sigma}$		
	profile likelihood		ME/PS matching thresholds	3.25	14%		
			Q^2 scale	2.68	11%		
•	(Theory shape uncerta	inties estimated	Top quark mass	2.28	10%		
	as the central value di	ifference from	Statistical	2.13	9%		
	value obtained setting	nuisance	Luminosity	1.13	5%		
	narameters to $+/-1\sigma$		JES	0.91	4%		
			tt cross section	0.87	4%		
•	Externalized in the sig	gnificance	Z+jet data/MC scale factor	0.56	2%		
	calculation		tW DR/DS scheme	0.45	2%		
			PDF	0.33	1%		
•	For other sources nuis	sance parameters	Lepton identification	0.31	1%		
	fixed to central value	and confidence	JER	0.27	1%		
	level interval change	ised as estimate	B-tagging data/MC scale factor	0.20	< 1%		
			tt Spin Correlations	0.12	< 1%		
•	"Statistical" uncertair	nty from fixing all	Top Pt Reweighting	0.12	< 1%		
	other sources to centr	al value	Event pile up	0.11	< 1%		
			E ^{miss} modeling	0.07	< 1%		
		Accepted by PRL	Lepton energy scale	0.02	< 1%		
		arXiv:1401.2942	Total	5.58	24%		
					-		

tW Cross-check analyses

• Two cross-check analyses performed, using the same event selection and the same signal and control regions with the following exceptions:

- p_{T,sys} Fit:
 - Veto extra btagged loose jets events
 - Cut on H_t in eµ channel (H_t >160GeV)
 - Same fit as BDT but to the p_{T,sys} distribution
 - Results:
 - Observed significance **4.0** sigma
 - Expected significance **3.2**^{+0.4}.0.9 sigma
 - Cross section: **24.3 ± 8.6** pb
- Cut and Count:
 - Veto extra btagged loose jets events
 - Cut on H_t in eµ channel (H_t >160GeV)
 - Fit to the event counts only in each region
 - Results:
 - Observed significance **3.6** sigma
 - Expected significance **2.8 ± 0.9** sigma
 - Cross section: **33.9 ± 8.6** pb

dilepton

tW Results

- Significance estimated using binned likelihood fit with pseudoexperiments (lots of them!):
 - Excess of events with respect to the background-only hypothesis
 - Observed significance in 12.2 fb⁻¹ of 8 TeV data:
 - Expected significance from MC: **5.4 ± 1.4σ**
- Cross-section estimated using profile likelihood:
 - $\sigma_{tW} = 23.4 \pm 5.4 \text{ pb at } 8\text{TeV}$
 - Theoretical value $(m_{top}=173 \text{GeV})$:
 - $\sigma_{tW} = 22.2 \pm 0.6(scale) \pm 1.4(PDF) pb$
- V_{tb} matrix element estimate ($|V_{tb}| \gg |V_{td}|, |V_{ts}|$ and $f_{Lv}=1$):

$$|V_{tb}| = \sqrt{\frac{\sigma_{tW}}{\sigma_{tW}^{th}}} = 1.03 \pm 0.12(exp.) \pm 0.04(th.)$$

47

• $|V_{tb}| > 0.78$ at 95% C.L. $(0 \le |V_{tb}|^2 \le 1)$

(Approximate NNLO) N. Kidonakis arxiv.org/pdf/1210.7813 (2012)

dilepton

8 TeV

12.2fb⁻

Accepted by PRL arXiv:1401.2942

Single top s-channel

- BDT analysis still not very sensitive (main systematics model uncertainties):
 - Expected significance: 0.9 sigma
 - Observed significance: 0.7 sigma
- Cross-section measurement:

 $\sigma_{s-ch.} = 6.2 \pm 5.4(exp.) \pm 5.9(th.) \text{ pb} = 6.2 \pm 8.0 \text{ pb}$

• Theory prediction (NLO+NNLL order) at 8Tev:

 $\sigma_{s-\mathrm{ch.}} = 5.55 \pm 0.08(\mathrm{scale}) \pm 0.21(\mathrm{PDF}) \mathrm{~pb}$

• Assuming Standard Model signal, Feldmann-Cousin confidence level interval is derived:

$$\sigma_{s\text{-ch.}} ~=~ 6.2^{+8.0}_{-5.1}~\mathrm{pb}$$

• Upper limit on s-channel cross-section calculated with Bayesian approach 11.5 pb (95%C.L.)

48

arXiv:

1205.3453

19.7fb⁻¹

CMS PAS

TOP-13-009

Single top cross-sections

• Summary from CMS single top production analyses:

