The Tevatron Higgs

Search

For the CDF & DØ collaborations

Wade Fisher

Michigan State University

Tevatron (1983-2011) proton - antiproton collider collision energy = 1.96 TeV

Tevatron (1983-2011) proton - antiproton collider collision energy = 1.96 TeV

Tevatron (1983-2011) proton - antíproton collíder collísíon energy = 1.96 TeV

The Tevatron's Higgs Legacy

Higgs searches at the Tevatron + Production and decay modes

Search strategies

Studies of Higgs production at $M_{\rm H}$ =125 GeV

- + Signal significance
- Measurements of Higgs
 properties

Producting Higgs

at the Tevatron

J1000+ 4 W,Z H W,Z 9.0000 9.000

4

J 0000+ # W,Z H W.2 W,Z 9.0000 9000

Focusing the Search

A Combination of Many Searches

Expected Exclusion Observed Exclusion

p-val·ue noun:

probability of an outcome as extreme as that observed, assuming the null hypothesis is true.

Production Rates

$$\mu_{125 \text{ GeV}} = 1.44^{+0.59}_{-0.56}$$

Production Rates

But is it a Higgs boson??

But is it a Higgs boson??

Ħ

But is it a Higgs boson??

0+

Comments

P=C=+

SM Higgs Pseudo-scalar

0+

0

1-

11

Class

Comments

SM Higgs Pseudo-scalar Composite Higgs. KK modes of ED. Strong SB (rho analog - QCD).

P = C = +2HDMs, SUSY, etc Quark production only. Forbidden by Landau-Yang? No!

JP

0+

0

1-

1+

2+

2----

Class

Comments

SM Higgs Pseudo-scalar Composite Higgs. KK modes of ED. Strong SB (rho analog - QCD).

Graviton-like tensor, or pseudo-tensor P = C = +2HDMs, SUSY, etc Quark production only, Forbidden by Landau-Yang? No!

Many assumptions to be made, depending on the model constructed

At the LHC, it's all about the angles.

At the LHC, it's all about the angles.

At the LHC, it's all about the angles.

At the Tevatron, it's all about the threshold.

W,Z

At the Tevatron, it's all about the threshold.

 $A_{00} = -a_1 E_Z / M_Z$ $A_{10} = -a_1$ **J**^P:O⁺

 $A_{00} = 0 \quad \Im^{P} \circ$ $A_{10} = -ia_1 \beta s$

At the Tevatron, it's all about the threshold.

 $A_{00} = -a_1 E_Z / M_Z$ $A_{10} = -a_1$ **J**^P:O⁺

 $A_{00} = 0 \quad \Im^{P_{00}}$ $A_{10} = -ia_1 \beta s$

 $\beta = 2p/\sqrt{s} \sim \sqrt{s - (M_H + M_Z)^2}$

At the Tevatron, it's all about the threshold.

 $A_{00} = -a_1 E_Z / M_Z$ $A_{10} = -a_1$ **J**^P:O⁺

 $A_{00} = 0 \quad \Im^{P_{00}}$ $A_{10} = -ia_1 \beta s$

 $\beta = 2p/\sqrt{s} \sim \sqrt{s - (M_H + M_Z)^2}$ $\sigma(V^{\star} \to VH) \propto \beta \sum |A_{ij}|^2$

Threshold V+H production goes as: $-\beta$ for $J^P=0^+$ (s-wave) $-\beta^3$ for $J^P=0^-$ (p-wave) $-\beta^5$ for $J^P=2^+$ (d-wave)

DØ excludes J^P models using H→bb decays J^P=0⁻ excluded at the 99.6% C.L. J^P=2⁺ excluded at the 99.9% C.L.

 $\mu_{H \to b\bar{b}}^{\text{fit}}$ 1.23

Is nature more complicated?

Doublet Model

Is nature more complicated?

 $\phi = \cos \alpha \ H + \sin \alpha \ A$

 $\frac{\Gamma[\phi \to b\bar{b}]}{\Gamma_{SM}[H \to b\bar{b}]} = (y_d^H \cos \alpha)^2 + (y_d^A \sin \alpha)^2$ Yukawa Couplings

Scan the JP=0-(1) $\sigma_{\rm Tot} = \sigma_A + \sigma_H$ Fraction (2) $f_A = \frac{\sigma_A}{\sigma_{\text{Tot}}} = \left(\frac{y_d^A}{y_d^{\text{SM}}}\sin\alpha\right)^2$

(1) $\sigma_{\rm Tot} = \sigma_A + \sigma_H$ $f_A = \frac{\sigma_A}{\sigma_{\rm Tot}} = \left(\frac{y_d^A}{y_d^{\rm SM}}\sin\alpha\right)$ (2)

*Neglects Interference in Angular Variables

Scan the J^P=0⁻ Fraction

(1)
$$\sigma_{\text{Tot}} = \sigma_A + \sigma_H$$

Scan the J^P=or
Fraction
(2) $f_A = \frac{\sigma_A}{\sigma_{\text{Tot}}} = \left(\frac{y_d^A}{y_d^S \text{M}} \sin \alpha\right)^2$
 $\int_{12}^{9} \frac{13}{12} \frac{\text{D0 Preliminary, } L_{\text{int}} \leq 9.7 \text{ fb}^{-1} - 1^{-\text{CL}, \text{Observed}}}{\sum_{n=1}^{9} 1.2 \sum_{n=1}^{10} \frac{\text{D0 Preliminary, } L_{\text{int}} \leq 9.7 \text{ fb}^{-1} - 1^{-\text{CL}, \text{Observed}}}{\sum_{n=1}^{9} 1.2 \sum_{n=1}^{10} \frac{\text{D0 Preliminary, } L_{\text{int}} \leq 9.7 \text{ fb}^{-1} - 1^{-\text{CL}, \text{Observed}}}{\sum_{n=1}^{9} \frac{\text{Scan the JP}}{\sum_{n=1}^{9} \frac{\text{Sc$

*Neglects Interference in Angular Variables

α

(1)
$$\sigma_{\text{Tot}} = \sigma_A + \sigma_H$$

Scan the J^P=0
Fraction
(2) $f_A = \frac{\sigma_A}{\sigma_{\text{Tot}}} = \left(\frac{y_d^A}{y_d^SM} \sin \alpha\right)^2$

0 Fraction

00

0.2

0.4

0.6

0.8

1.2

1

1.4

*Neglects Interference in Angular Variables

α

Higgs couplings

For new particles with M~1TeV, this is a discovery measurement

κ_V	κ_b	κ_γ
$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%
$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
$\sim -2\%$	$\sim -2\%$	$\sim -3\%$
	$egin{aligned} \kappa_V \ &\sim 6\% \ &\sim 1\% \ &\sim -0.0013\% \ &\sim -3\% \ &\sim -2\% \end{aligned}$	$egin{array}{c c c c c c c c c c c c c c c c c c c $

For new particles with M~1TeV, this is a discovery measurement

κ_V	κ_b	κ_γ
$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%
$\sim -3\%$	$\sim -(3-9)\%$ ($\sim -9\%$
$\sim -2\%$	$\sim -2\%$	$\sim -8\%$
	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$egin{array}{c c c c c c c c c c c c c c c c c c c $

start with rates...

start with rates...

start with rates...

No surprises, but the LHC will continue to improve here

	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim -3\%$

Final Tevatron Higgs results

- Search channels using full RunII dataset & published.

+ tevnphwg.fnal.gov

Final Tevatron Higgs results

- Search channels using full RunII dataset & published.

+ <u>tevnphwg.fnal.gov</u>

Achieved SM sensitivity over most of accessible mass range - Excess near 125 GeV corresponds to 3.0σ

+ Consistent with LHC results

Final Tevatron Higgs results - Search channels using full

RunII dataset & published.

+ tevnphwg.fnal.gov

Achieved SM sensitivity over most of accessible mass range - Excess near 125 GeV corresponds to 3.00

+ Consistent with LHC results

Sensitive to Higgs properties in Hbb mode

- J^P & couplings measurements are a valuable contribution

+ Updated J^P results coming from $D\emptyset$, CDF & CDF+D \emptyset

Individual Results

At M_{H} = 125 GeV: Exp. limit: 1.5 x $\sigma(SM)$ Obs. limit: 2.9 x $\sigma(SM)$

At M_{H} = 125 GeV: Exp. limit: 1.7 x $\sigma(SM)$ Obs. limit: 2.9 x $\sigma(SM)$

Higgs Mass

Higgs Mass

Higgs Mass

At the Tevatron, it's all
about the threshold.
$$A_{00} = -a_1 E_Z/M_Z$$
$$A_{10} = -a_1 \quad \mathbb{J}^P: \mathbb{O}^+$$
$$A_{00} = 0 \quad \mathbb{J}^P: \mathbb{O}^-$$
$$A_{10} = -ia_1 \beta s$$
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} = \frac{3}{4A_{\text{Tot}}^2} \left(\sin^2\theta [|A_{00}|^2 + 2|A_{11}|^2] + (1 + \cos^2\theta) [|A_{01}|^2 + |A_{10}|^2 + |A_{12}|^2]\right)$$

Threshold V+H production goes as: $-\beta$ for $J^P=0^+$ (s-wave)

- $-\beta^3$ for $J^P = 0^-$ (p-wave)
- $-\beta^5$ for $J^P = 2^+$ (d-wave)

Threshold V+H production goes as: $-\beta$ for $J^P=0^+$ (s-wave) $-\beta^3$ for $J^P=0^-$ (p-wave) $-\beta^5$ for $J^P=2^+$ (d-wave)

J. Ellis, D. S. Hwang, V. Sanz, and T. You, J. High Energy Phys. 2012, 134 (2012).
J. Ellis, V. Sanz, and T. You, arXiv:1303.0208, (2013).
D. Miller, S. Choi, B. Eberle, M. Muhlleitner, and P.

Zerwas, Phys. Lett. B 505, 149 (2001).

Quantifying the Excess: Sub Channels

Display all input histogram bins ordered according to S/B in one plot.

The background model has been constrained by the data.

Search Validation?

Search Validation?

Low Mass Search

9 >b W,Z H----W,Z **Η** Ð

Low Mass Search

b N.Z Η Н b

Low Mass Search

b H D

High Mass Search

9000++ 4 9 N

