TEV SCALE MODELS OF NEW PHYSICS
AT THE LHC

S. NANDI

Oklahoma State University
and
Oklahoma Center for High Energy Physics

S. Chakdar, T. Li, S. Nandi and S. K. Rai, Phys. Rev. D 87, 096002 (2013);

Talk presented at LHCP Conference, Columbia University, NY, June 2 - 7, 2014
In this talk, I present two well motivated models of new physics to solve some of the drawbacks of the SM

Predictions of the models can be tested at the LHC

MODEL 1: TOP $SU(5)$ MODEL \Rightarrow new vector bosons

MODEL 2: LEFT-RIGHT SYMMETRIC MIRROR MODEL \Rightarrow new fermions

MODEL 3: PARALLEL UNIVERSE, DARK MATTER AND INVISIBLE HIGGS DECAYS \Rightarrow new Higgs-like boson
MODEL 1 : Top $SU(5)$ model

MOTIVATION

- Remedy the non-unification of gauge couplings in SM.
- Has lepto-quark and di-quark gauge bosons at the TeV scale.
- Has baryon and lepton number violating interactions at the LHC.
- Potential for generating baryon asymmetry of the universe.
MODEL 1 : Top $SU(5)$ model

- Our gauge symmetry is non-supersymmetric $SU(5) \times SM'$ where $SM' = SU(3)'_C \times SU(2)'_L \times U(1)'_Y$.

- First two families of the SM fermions are charged under SM' and singlet under the $SU(5)$.

- The third family is charged under $SU(5)$ and singlet under SM'.

- The symmetry is broken to SM at TeV scale.

- Have lepto-quark and di-quark gage bosons, X and Y at the TeV scale coupling only to 3rd family.
The lepto-quark and di-quark gauge bosons, X and Y: $Q_X = +4/3, Q_Y = +1/3$ decays as

- $X \Rightarrow \bar{b}\tau^+, tt$; $Y \Rightarrow \bar{b}\nu_\tau, tb, \bar{t}\tau^+$.

The decays of X and Y violate both baryon number and lepton number.

- X can be observed as a resonance in $\bar{b}\tau^+$ and tt mode
- Y can be observed as a resonance in $\bar{t}\tau^+$ and tb mode.
Lepto-quark gauge bosons X and Y can be pair produced at the LHC via QCD strong interaction.

\[pp \to X\bar{X} \Rightarrow (\bar{b}^+\tau)(b^-\tau); (tt)(\bar{t}\bar{t}); (\bar{b}^+\tau)(\bar{t}\bar{t}). \]

Similarly for \(Y\bar{Y} \) production

From \(X\bar{X} \) productions \(\Rightarrow \) Resonance peaks in \((b\tau) \) and \((tt) \).

For \(Y\bar{Y} \) productions, \(\Rightarrow \) Resonance peaks in \((\bar{t}\tau^+) \) and \((tb)\).

Dominant SM background for \((\bar{b}^+\tau)(b^-\tau) \) final state

\[pp \Rightarrow 2b2\tau, 4b, 2j2b, 4j, t\bar{t} \]

Similarly for the other final states.
In this section, we analyze the invariant mass distribution for the $b\tau^-$ channel at 8 TeV LHC. The graph illustrates the distribution of the invariant mass $M_{b\tau^-}$, showing the signature of a resonance. The data is analyzed in two modes: $2b^+\tau^-$ and $2b^-\tau^-$. The SM prediction for $2b^+\tau^-$ is also included for comparison. The distribution peaks at around 800 GeV, indicating a significant signal in this mass range. This resonance could be indicative of new physics, requiring further investigation.
X resonance in the $b\tau^-$ mode at 14 LHC

- Invariant mass distribution for the $b\tau^-$ channel for 14 TeV LHC
X resonance in the tt mode at 8 TeV LHC

Invariant mass distribution for the tt channel for $M_X = 800$ GeV at 8 TeV
X resonance in the tt mode at 14 TeV LHC

Invariant mass distribution for the tt channel for $M_X = 1000$ GeV at 14 TeV.
LHC SEARCH SO FAR

CMS COLLABORATION: Search for $b\tau$ resonance: 7 TeV LHC, $4.8 fb^{-1}$ (PRL) $\Rightarrow M_X > 760$ GeV (95% CL); 8 TeV LHC, $19.7 fb^{-1}$ $\Rightarrow M_{scalar} > 740$ GeV.

ATLAS COLLABORATION: Search for $b\tau$ resonance: 7 TeV LHC, $4.7 fb^{-1}$ $\Rightarrow M_{scalar} > 534$ GeV (95% CL).

NOTE: Observation of Resonances at both $X \rightarrow b\tau$ and tt are needed to establish bayon and lepton number violation.

LHC REACH at 5σ

8 TeV LHC, $30 fb^{-1}$ $\Rightarrow M \simeq 800$ GeV.

14 TeV LHC, $100 fb^{-1}$ $\Rightarrow M \simeq 1.5$ TeV.
LHC sensitivity to the X and Y gauge bosons

For the sensitivity analysis we define

$$\sigma_s \geq \frac{N}{L} \left[N + 2 \sqrt{L\sigma_b} \right],$$

(0.1)

<table>
<thead>
<tr>
<th>Final States</th>
<th>$\sqrt{s} = 8$ TeV</th>
<th>$\sqrt{s} = 14$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b\ b\ MET$</td>
<td>$L(fb^{-1})$</td>
<td>M_Y(GeV)</td>
</tr>
<tr>
<td>10</td>
<td>737</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>772</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>793</td>
<td>300</td>
</tr>
<tr>
<td>$bt\tau^- ME_T$</td>
<td>20</td>
<td>770</td>
</tr>
<tr>
<td>$+b\bar{t}\tau^+ ME_T$</td>
<td>30</td>
<td>795</td>
</tr>
</tbody>
</table>
MODEL 2: LEFT-RIGHT (L-R) SYMMETRIC MIRROR MODEL

MOTIVATION

- Explain parity violation at low energy.
- Solve strong CP problem.
- Generate tiny neutrino masses
- Can have mirror fermions at the TeV scale and be explored at the LHC.
USUAL L-R SYMMETRIC MODEL

Gauge Symmetry: $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$.

FERMIONS: For every left handed doublet, there is a right handed doublet

\[
\begin{pmatrix}
\nu \\
e
\end{pmatrix}_L \Rightarrow \begin{pmatrix}
\nu \\
e
\end{pmatrix}_R
\]

\[
\begin{pmatrix}
u \\
d
\end{pmatrix}_L \Rightarrow \begin{pmatrix}
u \\
d
\end{pmatrix}_R
\]

(0.2)

HIGGSES: Under $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

$(2, 1, 1) + (1, 2, 1) + (1, 2, 2)$
MODEL 2: LEFT-RIGHT SYMMETRIC MIRROR MODEL

Gauge Symmetry: $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{Y'} \times Z_2$

FERMIONS: Ordinary sector: blue, mirror sector: red with hat.

$l_L = \begin{pmatrix} \nu \\ e \end{pmatrix}_L \sim (1, 2, 1, -1)$, $e_R \sim (1, 1, 1, -2)$, $\nu_R \sim (1, 1, 1, 0)$;

$\hat{l}_R = \begin{pmatrix} \hat{\nu} \\ \hat{e} \end{pmatrix}_R \sim (1, 1, 2, -1)$, $\hat{e}_L \sim (1, 1, 1, -2)$, $\hat{\nu}_L \sim (1, 1, 1, 0)$;

$Q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L \sim (3, 2, 1, \frac{1}{3})$, $u_R \sim (3, 1, 1, \frac{4}{3})$, $d_R \sim (3, 1, 1, -\frac{2}{3})$;

$\hat{Q}_R = \begin{pmatrix} \hat{u} \\ \hat{d} \end{pmatrix}_R \sim (3, 1, 2, \frac{1}{3})$, $\hat{u}_L \sim (3, 1, 1, \frac{4}{3})$, $\hat{d}_L \sim (1, 1, 1, -\frac{2}{3})$;

$Q = T_{3L} + T_{3R} + \frac{Y'}{2}$.

- Z_2: SM and RH singlet ν's: even
- Mirror fermions and LH singlet ν's: odd
MODEL 2: LEFT-RIGHT SYMMETRIC MIRROR MODEL

- **HIGGSES:** Under $SU(2)_L \times SU(2)_R \times U(1)_{Y'}$
 $(2, 1, 1) + (1, 2, 1) + (2, 2, 1) \Rightarrow Z_2$ even

- **Additional Higgs:** $\chi(1, 1, 0) \Rightarrow Z_2$ odd \rightarrow needed for the mixing between the ordinary fermions and mirror fermions.

- **SYMMETRY BREAKING:**
 - $SU(2)_L \times SU(2)_R \times U(1)_{Y'} \times Z_2 \rightarrow SU(2)_L \times SU(2)_R \times U(1)_{Y'} \rightarrow SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$
 - Z_2 is broken spontaneously by $<V_\chi> \simeq 10^7$ GeV, and also softly.
 - χ mixes ordinary fermions with mirror fermions.
 - $L_{mix} = h_u \bar{u}_R \hat{u}_L \chi + h_d \bar{d}_R \hat{d}_L \chi + h_e \bar{e}_R \hat{e}_L \chi + h.c.$
NEUTRINO MASSES

- Four ν's per family (one light, 3 very heavy)

- Dirac masses: $m = f_{\nu} V / \sqrt{2}$, $m' = f_{\nu} \hat{V} / \sqrt{2}$, $M_{\nu\hat{\nu}} = \bar{\nu}_R \nu_L$

- Majorana masses, $M : \nu_R \nu_R, \nu_L \nu_L$

Assuming $M_{\nu\hat{\nu}} \simeq M \simeq \hat{V} \Rightarrow ((m_{\nu})_{\text{light}} \simeq m^2 / M$;

- all other ν's are heavy

To get $(m_{\nu})_{\text{light}} \simeq 10^{-2}$ eV $\Rightarrow M \simeq \hat{V} \simeq 10^7$ GeV

[with $f_{\nu} \simeq 10^{-4}$]
MIRROR PARTICLE MASSES

- Only first mirror family is light

\[
\frac{m_{\hat{u}}}{m_u} \approx \frac{m_{\hat{d}}}{m_d} \approx \frac{m_{\hat{e}}}{m_e} \approx \frac{\nu'}{v}
\]

- With \(\hat{V} \approx 10^7 \) GeV
 \[\Rightarrow m_{\hat{u}}, m_{\hat{d}} \Rightarrow \text{few hundred GeV - TeV range}\]

DOMINANT DECAY MODES

\(\hat{u} \Rightarrow uz, dW \)
\(\hat{d} \Rightarrow dz, uW \)
MODEL 2 : LEFT-RIGHT SYMMETRIC MIRROR MODEL

- $pp \Rightarrow \bar{q}q \Rightarrow (qZ)(\bar{q}Z) : 2$ jets + 2 Z final states

- $pp \Rightarrow \bar{q}q \Rightarrow (qZ)(\bar{q}'W) : 2$ jets + $Z + W$ final states

- Resonance in (qZ), (qW) modes
2 jets+Z-boson+W boson signature after $\Delta \phi$ cut

Center-of-mass energy 14 TeV

$\frac{d\sigma}{dM}$ [fb/GeV]

SM Background
$m_{q'}=400$ GeV
$m_{q'}=600$ GeV
MODEL 2 : LEFT-RIGHT SYMMETRIC MIRROR MODEL

Reach at the LHC in ZZ channel in 99% CL

![Graph showing Luminosity vs. Mq for pp collision at 8 and 14 TeV]
MODEL 2: LEFT-RIGHT SYMMETRIC MIRROR MODEL

Reach at the LHC in ZW channel in 99% CL
Presented two well motivated TeV scale models of new physics.

MODEL 1: TOP $SU(5)$ MODEL
- Has di-quark and lepto-quark gauge bosons, violating both baryon and lepton number.
- Resonances in $(b\tau), (tt)$ and (tb) channels.
- Reach: 14 TeV LHC, $100fb^{-1} \sim 1.5$ TeV. (Current LHC limit $\Rightarrow M > 760$ GeV (CMS Collaboration).

MODEL 2: LEFT-RIGHT SYMMETRIC MIRROR MODEL
- Has mirror fermions (1st family at TeV scale)
- Resonances at $(u Z), (d Z), (u W), (d W)$ channels.
- Reach at 14 TeV LHC, $100fb^{-1}$ luminosity, $\Rightarrow \sim 800$ GeV.
- Current LHC limit: Analysis in progress by ATLAS Collaboration.