TEV SCALE MODELS OF NEW PHYSICS AT THE LHC

S. NANDI

Oklahoma State University and Oklahoma Center for High Energy Physics

[S.Chakdar, T. Li, S. Nandi and S. K. Rai, Phys.Lett.B 718,121(2012); S. Chakdar, T. Li, S. Nandi and S. K. Rai, Phys. Rev. D 87, 096002(2013); S. Chakdar, K. Ghosh, S. Nandi, S.K. Rai, Phys. Rev D 88, (2013); S. Chakdar, K. Ghosh, S. Nandi, Phys. Lett. B 732(2014)] Talk presented at LHCP Conference, Columbia University, NY, June 2 - 7, 2014

Introduction

- In this talk, I present two well motivated models of new physics to solve some of the drawbacks of the SM
- Predictions of the models can be tested at the LHC
- MODEL 1: TOP SU(5) MODEL \Rightarrow new vector bosons
- MODEL 2: LEFT-RIGHT SYMMETRIC MIRROR MODEL
 ⇒ new fermions
- MODEL 3: PARALLEL UNIVERSE, DARK MATTER AND INVISIBLE HIGGS DECAYS ⇒ new Higgs-like boson

(S.Chakdar, T. Li, SN, S. K. Rai, Phys.Lett.B 718,121(2012); S. Chakdar, T. Li, SN, S. K. Rai, Phys. Rev. D 87, 096002(2013)). **MOTIVATION**

- Remedy the non-unification of gauge couplings in SM.
- Has lepto-quark and di-quark gauge bosons at the TeV scale.
- Has baryon and lepton number violating interactions at the LHC.
- Potential for generating baryon asymmetry of the universe.

MODEL 1 : Top SU(5) model

- Our gauge symmetry is non-supersymmetric $SU(5) \times SM'$ where $SM' = SU(3)'_C \times SU(2)'_L \times U(1)'_Y$.
- First two families of the SM fermions are charged under SM' and singlet under the SU(5).
- The third family is charged under *SU*(5) and singlet under *SM*'
- The symmetry is broken to SM at TeV scale.
- Have lepto-quark and di-quark gage bosons, X and Y at the TeV scale coupling only to 3rd family.

• The lepto-quark and di-quark gauge bosons, X and Y: $Q_X = +4/3$, $Q_Y = +1/3$ decays as

•
$$X \Rightarrow \bar{b}\tau^+, tt$$
; $Y \Rightarrow \bar{b}\nu_{\tau}, tb, \bar{t}\tau^+$.

- The decays of X and Y violate both baryon number and lepton number.
- X can be observed as a resonance in $ar{b} au^+$ and tt mode
- Y can be observed as a resonance in $\bar{t}\tau^+$ and tb mode.

• Lepto-quark gauge bosons X and Y can be pair produced at the LHC via QCD strong interaction.

•
$$pp \rightarrow X\bar{X} \Rightarrow (\bar{b}\tau^+)(b\tau^-); (tt)(\bar{t}\bar{t}); (\bar{b}\tau^+)(\bar{t}\bar{t}).$$

- Similarly for $Y\bar{Y}$ production
- From $X\bar{X}$ productions \Rightarrow Resonance peaks in $(b\tau)$ and (tt).
- For $Y\bar{Y}$ productions, \Rightarrow Resonance peaks in $(\bar{t}\tau^+)$ and (tb).
- Dominant SM background for $(\bar{b}\tau^+)(b\tau^-)$ final state $pp \Rightarrow 2b2\tau, 4b, 2j2b, 4j, t\bar{t}$
- Similarly for the other final states.

$ar{X}$ resonance in the $b au^-$ mode at 8 LHC

• Invariant mass distribution for the $b\tau^-$ channel for 8 TeV LHC

X resonance in the $b au^-$ mode at 14 LHC

• Invariant mass distribution for the $b\tau^-$ channel for 14 TeV LHC

X resonance in the tt mode at 8 TeV LHC

Invariant mass distribution for the tt channel for $M_X = 800$ GeV at 8 TeV

X resonance in the *tt* mode at 14 TeV LHC

Invariant mass distribution for the $t\bar{t}$ channel for $M_X = 1000$ GeV at 14 TeV

LHC SEARCH SO FAR

- CMS COLLABORATION: Search for $b\tau$ resonance: 7 TeV LHC, $4.8fb^{-1}$ (PRL) $\Rightarrow M_X > 760$ GeV (95%*CL*); 8 TeV LHC, $19.7fb^{-1} \Rightarrow M_{scalar} > 740$ GeV.
- ATLAS COLLABORATION: Search for $b\tau$ resonance: 7 TeV LHC , $4.7 fb^{-1} \Rightarrow M_{scalar} > 534$ GeV (95% CL).
- **NOTE** : Observation of Resonances at both $X \rightarrow b\tau$ and tt are needed to establish bayon and lepton number violation. **LHC REACH at** 5σ
- 8 TeV LHC, $30 fb^{-1} \Rightarrow M \simeq 800$ GeV.
- 14 TeV LHC, $100 fb^{-1} \Rightarrow M \simeq 1.5$ TeV.

For the sensitivity analysis we define

$$\sigma_s \ge \frac{N}{L} \left[N + 2\sqrt{L\sigma_b} \right], \tag{0.1}$$

	\sqrt{s} = 8 TeV		\sqrt{s} = 14 TeV	
Final States	$L(fb^{-1})$	$M_Y(GeV)$	$L(fb^{-1})$	$M_Y(GeV)$
	10	737	30	1325
b b MET	20	772	100	1440
	30	793	300	1545
$bt\tau^-ME_T$	20	770	200	1650
$+b\bar{t}\tau^+ME_T$	30	795	300	1690

- (S. Chakdar, K. Ghosh, SN, S.K. Rai, Phys. Rev D 88, 2013) MOTIVATION
 - Explain parity violation at low energy.
 - Solve strong CP problem.
 - Generate tiny neutrino masses
 - Can have mirror fermions at the TeV scale and be explored at the LHC.

USUAL L-R SYMMETRIC MODEL

Gauge Symmetry : $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. **FERMIONS**: For every left handed doublet, there is a right handed doublet

$$\begin{pmatrix} \nu \\ e \end{pmatrix} L \Rightarrow \begin{pmatrix} \nu \\ e \end{pmatrix} R$$
$$\begin{pmatrix} u \\ d \end{pmatrix} L \Rightarrow \begin{pmatrix} u \\ d \end{pmatrix} R$$

(0.2)

HIGGSES: Under $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (2,1,1) + (1,2,1) + (1,2,2)

Gauge Symmetry: $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{Y'} \times Z_2$ FERMIONS: Ordinary sector: blue, mirror sector : red with hat.

$$\begin{split} &l_{L} = \begin{pmatrix} \nu \\ e \end{pmatrix}_{L} \sim (1,2,1,-1) \quad , \quad e_{R} \sim (1,1,1,-2) \quad , \quad \nu_{R} \sim (1,1,1,0); \\ &\hat{l}_{R} = \begin{pmatrix} \hat{\nu} \\ \hat{e} \end{pmatrix}_{R} \sim (1,1,2,-1) \quad , \quad \hat{e}_{L} \sim (1,1,1,-2) \quad , \quad \hat{\nu}_{L} \sim (1,1,1,0); \\ &Q_{L} = \begin{pmatrix} u \\ d \end{pmatrix}_{L} \sim (3,2,1,\frac{1}{3}) \quad , \quad u_{R} \sim (3,1,1,\frac{4}{3}) \quad , \quad d_{R} \sim (3,1,1,-\frac{2}{3}); \\ &\hat{Q}_{R} = \begin{pmatrix} \hat{\mu} \\ \hat{d} \end{pmatrix}_{R} \sim (3,1,2,\frac{1}{3}) \quad , \quad \hat{u}_{L} \sim (3,1,1,\frac{4}{3}) \quad , \quad \hat{d}_{L} \sim (1,1,1,-\frac{2}{3}); \end{split}$$

$$Q = T_{3L} + T_{3R} + Y'/2.$$

- Z_2 : SM and RH singlet ν 's : even
- Mirror fermions and LH singlet ν 's : odd

- HIGGSES: Under $SU(2)_L \times SU(2)_R \times U(1)_{Y'}$
- $(2,1,1) + (1,2,1) + (2,2,1) \Rightarrow Z_2$ even
- Additional Higgs: χ(1, 1, 0) ⇒ Z₂ odd → needed for the mixing between the ordinay fermions and mirror fermions.

• SYMMETRY BREAKING:

- $SU(2)_L \times SU(2)_R \times U(1)_{Y'} \times Z_2 \rightarrow$ $SU(2)_L \times SU(2)_R \times U(1)_{Y'} \rightarrow SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$
- Z_2 is broken spontaneously by $< V_{\chi} > \simeq 10^7$ GeV, and also softly.
- χ mixes ordinary fermions with mirror fermions.
- $L_{mix} = h_u \bar{u_R} \hat{u_L} \chi + h_d \bar{d_R} \hat{d_L} \chi + h_e \bar{e_R} \hat{e_L} \chi + h.c.$

NEUTRINO MASSES

- Four ν 's per family (one light, 3 very heavy)
- Dirac masses : $m = f_{\nu} V / \sqrt{2}, m' = f_{\nu} \hat{V} / \sqrt{2}, M_{\nu \hat{\nu}} = \bar{\nu_R} \hat{\nu_L}$
- Majorana masses, $M : \nu_R \nu_R, \hat{\nu_L} \hat{\nu_L}$
- Assuming $M_{
 u\hat{
 u}}\simeq M\simeq \hat{V}\Rightarrow ((m_
 u)_{light}\simeq m^2/M;$
- all other ν 's are heavy

• To get
$$(m_
u)_{light} \simeq 10^{-2} \text{ eV} \Rightarrow M \simeq \hat{V} \simeq 10^7 \text{ GeV}$$

[with $f_
u \simeq 10^{-4}$]

MIRROR PARTICLE MASSES

• Only first mirror family is light

•
$$\frac{m_{\hat{u}}}{m_u} \simeq \frac{m_{\hat{d}}}{m_d} \simeq \frac{m_{\hat{e}}}{m_e} \simeq \frac{v'}{v}$$

• With $\hat{V} \simeq 10^7$ GeV $\Rightarrow m_{\hat{u}}, m_{\hat{d}} \Rightarrow$ few hundred GeV - TeV range

DOMINANT DECAY MODES $\hat{u} \Rightarrow uz, dW$ $\hat{d} \Rightarrow dz, uW$

- $pp \Rightarrow \hat{q}\bar{\hat{q}} \Rightarrow (qZ)(\bar{q}Z)$: 2 jets + 2 Z final states
- $pp \Rightarrow \hat{q}\bar{\hat{q}} \Rightarrow (qZ)(\bar{q'}W)$: 2 jets +Z+W final states
- Resonance in (q Z), (q W) modes

2 jets+Z-boson+W boson signature after $\Delta \phi$ cut

Reach at the LHC in ZZ channel in 99% CL

Reach at the LHC in ZW channel in $99\%~{\rm CL}$

CONCLUSIONS

• Presented two well motivated TeV scale models of new physics.

MODEL 1: TOP SU(5) MODEL

- Has di-quark and lepto-quark gauge bosons, violating both baryon and lepton number.
- Resonances in $(b\tau)$, (tt) and (tb) channels.
- Reach: 14 TeV LHC, 100*fb*⁻¹ ≃ 1.5 TeV. (Current LHC limit ⇒ M > 760 GeV (CMS Collaboration).
 MODEL 2: LEFT-RIGHT SYMMETRIC MIRROR MODEL
- Has mirror fermions (1st family at TeV scale)
- Resonances at (u Z), (d Z), (u W), (d W) channels.
- Reach at 14 TeV LHC, $100 fb^{-1}$ luminosity, $\Rightarrow \simeq 800$ GeV.
- Current LHC limit : Analysis in progress by ATLAS Collaboration.