

# (37) Search for invisible Higgs decays in the VBF channel



Chayanit Asawatangtrakuldee on behalf of the CMS Collaboration **Peking University** 

## Motivation

- ightharpoonup SM H  $\rightarrow$  invisible only possible via H  $\rightarrow$  ZZ\* $\rightarrow$  vvvv (~0.1%)
- > Despite the observation of 125 GeV SM Higgs boson, the possibility for non-SM properties remains
- ➤ Visible SM decay modes constrain BF(H → BSM) < 64%</p>
- ➤ Significant BF(H → invisible) would be a strong sign of the BSM theories, e.g. H  $\rightarrow$  2LSPs in SUSY, Graviscalars in the ADD model, Dark matter and etc.
- > VBF production has larger cross-section than VH and ttH - potentially better sensitivity
- Major challenge in backgrounds estimation

Feynman diagrams of VBF production

### **Analysis Strategy**

- > Data from 8TeV collision corresponding to an integrated luminosity of 19.5 fb<sup>-1</sup> was collected by dedicated triggers requiring jet pair in a loose VBF-like topology and MET (missing transverse energy)
- Signal extraction :
- $\Leftrightarrow$  Leptons (e, $\mu$ ) veto  $p_T > 10 \text{ GeV}$
- ♦ Tighter selection of VBF tag jet pair
- $\Leftrightarrow$  Central-jet  $(\eta_{j1} < \eta_{cj} < \eta_{j2})$  veto  $p_T > 30$  GeV  $M_{j1j2} > 1100$  GeV
- $|\eta_{j1} \eta_{j2}| > 4.2$

 $\eta_{j1} \cdot \eta_{j2} < 0$ 

 $p_{T,i} > 50 \text{ GeV and } |\eta_i| < 4.7$ 

- $\Leftrightarrow \Delta \Phi_{i1i2} < 1.0$
- > Perform a single-bin counting experiment using the observed yield in signal region and estimated backgrounds by data-driven method

# Data-driven Backgrounds Estimation

- > The dominant backgrounds arise from V+jets processes, Z(vv)+jets and W(lv)+jets when the charged lepton is outside acceptance or not identified, contributing similar topology to VBF (H  $\rightarrow$  invisible) production
- > Data-driven for V+jets: identify background rich control regions and extrapolate to signal region using factors derived from MC simulation
- > The background from QCD multijet processes is also estimated from data due to lack of MC statistic

#### Z(vv)+jets Background

- Define Z(μμ) control region as signal region but :
- ✓ require  $\mu^+\mu^-$ , each  $p_{T,\mu} > 20$  GeV and  $60 < M_{\mu\mu} < 120$  GeV
- ✓ veto any additional leptons not from Z
- ✓ redefine MET to exclude Z and require > 130 GeV
- ♦ The number of Z(vv) events is predicted from :

$$N_{\nu\nu}^{\rm s} = (N_{\mu\mu{\rm obs}}^{\rm c} - N_{\rm bkg}^{\rm c}) \cdot \frac{\sigma({\rm Z} \to \nu\nu)}{\sigma({\rm Z}/\gamma^* \to \mu\mu)} \cdot \frac{\varepsilon_{\rm ZMC}^{\rm s}}{\varepsilon_{\rm ZMC}^{\rm c}}.$$

MC factors Ratio of BF = 5.651 ± 0.023 (MCFM)  $\frac{1}{20}$  80  $\frac{1}{100}$  cms  $\varepsilon^{S}_{ZMC} = (1.65 \pm 0.27) \times 10^{-6}$ 

 $\varepsilon^{C}_{ZMC} = (1.11 \pm 0.17) \times 10^{-6}$ from DY( $\mu\mu$ )+jets, EWK Z( $\mu\mu$ ) Results N<sup>C</sup><sub>obs</sub> = 12 events

 $N_{bkq}^{C} = 0.23 \pm 0.15$  events  $N_{vv}^{S} = 99 \pm 29 \text{ (stat.)} \pm 25 \text{ (syst.)}$ Invariant mass of dimuon pair

DY(II)+jets

tī, tW, VV

#### W(Iv)+jets Background

W(µv)+jets and W(ev)+jets

- ♦ Define single-lepton control regions
- ♦ The number of W+jets background is estimated from

$$N_{\ell}^{\mathrm{s}} = (N_{\ell \mathrm{obs}}^{\mathrm{c}} - N_{\mathrm{bkg}}^{\mathrm{c}}) \cdot \frac{N_{\mathrm{WMC}}^{\mathrm{s}}}{N_{\mathrm{WMC}}^{\mathrm{c}}} > \frac{\mathrm{from} \ \mathrm{W} \rightarrow \mathrm{Iv}}{\mathrm{MC}}$$
 where  $N_{\ell}^{\mathrm{s}} = (N_{\ell \mathrm{obs}}^{\mathrm{c}} - N_{\mathrm{bkg}}^{\mathrm{c}}) \cdot \frac{N_{\mathrm{WMC}}^{\mathrm{s}}}{N_{\mathrm{WMC}}^{\mathrm{c}}} > \frac{\mathrm{from} \ \mathrm{W} \rightarrow \mathrm{Iv}}{\mathrm{MC}}$ 

Results:  $N_{W(\mu\nu)}^{S} = 67 \pm 5 \text{ (stat.)} \pm 16 \text{ (syst.)}$  $N_{W(ev)}^{S} = 63 \pm 9 \text{ (stat.)} \pm 18 \text{ (syst.)}$ 

W(TV)+jets -- tau decays hadronically

♦ Define control region as signal region and require one hadronic tau  $p_T > 20$  GeV  $|\eta| < 2.3$  but without CJV to increase the yield, therefore:

$$N_{ au_{
m h}}^{
m s} = (N_{ au 
m obs}^{
m c} - N_{
m bkg}^{
m c}) \cdot rac{arepsilon_{
m CJV}}{arepsilon_{ au}} 
angle rac{
m from \ W 
ightarrow au_{
m had}}{
m MC \ events}$$

• Results :  $N_{W(TV)}^{S} = 53 \pm 18$  (stat.)  $\pm 18$  (syst.)

#### **QCD** Background

- $\diamond$  Effectively reduced to small level by MET, CJV and  $\Delta\Phi$
- ♦ "ABCD" method of MET vs. CJV, assuming they are uncorrelated
- ✓ A: fail MET selection, fail CJV selection
- ✓ B: pass MET selection, fail CJV selection
- ✓ C: fail MET selection, pass CJV selection
- ✓ D : pass MET selection, pass CJV selection -- Signal
- **♦ Numbers of region A,B,C are estimated from data** subtract electroweak backgrounds from MC
- **♦ Number of QCD background**
- is therefore given by :  $N_D = N_B N_C / N_A$

**♦** Results :

 $N_{QCD}^{S} = 31 \pm 2 \text{ (stat.)} \pm 23 \text{ (syst.)}$ 



# Signal vs. Backgrounds

- ➤ Signal of 125 GeV Higgs boson with 100% BF(H → inv) produced via VBF and gluon-fusion processes are based on POWHEG simulation
- Minor backgrounds are estimated from MC simulation

| Process                                    | Event yields                                            |
|--------------------------------------------|---------------------------------------------------------|
| $Z(\nu\nu)+{ m jets}$                      | $99 \pm 29  \mathrm{(stat.)} \pm 25  \mathrm{(syst.)}$  |
| $\mathrm{W}(\mu  u) + \mathrm{jets}$       | $67 \pm 5  \mathrm{(stat.)} \pm 16  \mathrm{(syst.)}$   |
| $\mathrm{W}(\mathrm{e} u)\mathrm{+jets}$   | $63 \pm 9  \mathrm{(stat.)} \pm 18  \mathrm{(syst.)}$   |
| $ m W(	au_h u) + jets$                     | $53\pm18\mathrm{(stat.)}\pm18\mathrm{(syst.)}$          |
| QCD multijet                               | $31 \pm 2  \mathrm{(stat.)} \pm 23  \mathrm{(syst.)}$   |
| Sum $(t\bar{t}, single top quark, VV, DY)$ | $20.0 \pm 8.2  \mathrm{(syst.)}$                        |
| Total background                           | $332 \pm 36  \mathrm{(stat.)} \pm 46  \mathrm{(syst.)}$ |
| VBF H(inv.)                                | $210 \pm 30  (\mathrm{syst.})$                          |
| ggF H(inv.)                                | $14 \pm 11  (\mathrm{syst.})$                           |
| Observed data                              | 390                                                     |
| S/B (%)                                    | 70                                                      |

#### Results

- > The main sources of uncertainty are statistics from control samples in data and MC samples
- > Systematic uncertainties include jet/MET scale/resolution, leptons efficiency, CMS crosssection measurements in minor backgrounds, PDFs and factorization/renormalization scale in signal yields and etc.
- > Limits are set using an asymptotic CL<sub>s</sub> method
- $\triangleright$  Results : for m<sub>H</sub> = 125 GeV at 95% CL

**Observed limit = 0.65** Expected limit = 0.49



VBF H(inv) tt̄, tW, DY(II)+jets, VV 10 10<sup>-2</sup> 3000 3500 M<sub>ii</sub> [GeV] 2000



inv)/σ<sub>VBF</sub>(SM) CMS VBF H → invisible 95% CL limits  $\sqrt{s} = 8 \text{ TeV}, L = 19.5 \text{ fb}^{-1}$ Observed limit ----- Expected limit Expected limit (1 $\sigma$ ) Expected limit (20) B(H m<sub>H</sub> [GeV]

Expected and observed 95% CL upper limits on the production cross-section times invisible Higgs branching fraction normalized to the SM VBF production cross-section, as a function of  $m_H$ 

MET and M<sub>ii</sub> distributions in signal region

#### References & Acknowledgements

